| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1519.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
| 2 |
|
bnj1519.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 3 |
|
bnj1519.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 4 |
|
bnj1519.4 |
|- F = U. C |
| 5 |
|
nfre1 |
|- F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) |
| 6 |
5
|
nfab |
|- F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 7 |
3 6
|
nfcxfr |
|- F/_ d C |
| 8 |
7
|
nfuni |
|- F/_ d U. C |
| 9 |
4 8
|
nfcxfr |
|- F/_ d F |
| 10 |
|
nfcv |
|- F/_ d x |
| 11 |
9 10
|
nffv |
|- F/_ d ( F ` x ) |
| 12 |
|
nfcv |
|- F/_ d G |
| 13 |
|
nfcv |
|- F/_ d _pred ( x , A , R ) |
| 14 |
9 13
|
nfres |
|- F/_ d ( F |` _pred ( x , A , R ) ) |
| 15 |
10 14
|
nfop |
|- F/_ d <. x , ( F |` _pred ( x , A , R ) ) >. |
| 16 |
12 15
|
nffv |
|- F/_ d ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) |
| 17 |
11 16
|
nfeq |
|- F/ d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) |
| 18 |
17
|
nf5ri |
|- ( ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) -> A. d ( F ` x ) = ( G ` <. x , ( F |` _pred ( x , A , R ) ) >. ) ) |