| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1519.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1519.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1519.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
bnj1519.4 |
⊢ 𝐹 = ∪ 𝐶 |
| 5 |
|
nfre1 |
⊢ Ⅎ 𝑑 ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
| 6 |
5
|
nfab |
⊢ Ⅎ 𝑑 { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 7 |
3 6
|
nfcxfr |
⊢ Ⅎ 𝑑 𝐶 |
| 8 |
7
|
nfuni |
⊢ Ⅎ 𝑑 ∪ 𝐶 |
| 9 |
4 8
|
nfcxfr |
⊢ Ⅎ 𝑑 𝐹 |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑑 𝑥 |
| 11 |
9 10
|
nffv |
⊢ Ⅎ 𝑑 ( 𝐹 ‘ 𝑥 ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑑 𝐺 |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) |
| 14 |
9 13
|
nfres |
⊢ Ⅎ 𝑑 ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 15 |
10 14
|
nfop |
⊢ Ⅎ 𝑑 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 16 |
12 15
|
nffv |
⊢ Ⅎ 𝑑 ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) |
| 17 |
11 16
|
nfeq |
⊢ Ⅎ 𝑑 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) |
| 18 |
17
|
nf5ri |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) → ∀ 𝑑 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝐹 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) |