Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1405.1 | |- ( ph -> X e. U_ y e. A B ) |
|
Assertion | bnj1405 | |- ( ph -> E. y e. A X e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1405.1 | |- ( ph -> X e. U_ y e. A B ) |
|
2 | eliun | |- ( X e. U_ y e. A B <-> E. y e. A X e. B ) |
|
3 | 1 2 | sylib | |- ( ph -> E. y e. A X e. B ) |