Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1405.1 | |- ( ph -> X e. U_ y e. A B ) |
|
| Assertion | bnj1405 | |- ( ph -> E. y e. A X e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1405.1 | |- ( ph -> X e. U_ y e. A B ) |
|
| 2 | eliun | |- ( X e. U_ y e. A B <-> E. y e. A X e. B ) |
|
| 3 | 1 2 | sylib | |- ( ph -> E. y e. A X e. B ) |