Metamath Proof Explorer
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypothesis |
bnj1405.1 |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
|
Assertion |
bnj1405 |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐴 𝑋 ∈ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1405.1 |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ) |
2 |
|
eliun |
⊢ ( 𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑋 ∈ 𝐵 ) |
3 |
1 2
|
sylib |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐴 𝑋 ∈ 𝐵 ) |