Metamath Proof Explorer


Theorem bnj1405

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1405.1 φXyAB
Assertion bnj1405 φyAXB

Proof

Step Hyp Ref Expression
1 bnj1405.1 φXyAB
2 eliun XyAByAXB
3 1 2 sylib φyAXB