Step |
Hyp |
Ref |
Expression |
1 |
|
bnj222.1 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
2 |
|
suceq |
⊢ ( 𝑖 = 𝑚 → suc 𝑖 = suc 𝑚 ) |
3 |
2
|
eleq1d |
⊢ ( 𝑖 = 𝑚 → ( suc 𝑖 ∈ 𝑁 ↔ suc 𝑚 ∈ 𝑁 ) ) |
4 |
2
|
fveq2d |
⊢ ( 𝑖 = 𝑚 → ( 𝐹 ‘ suc 𝑖 ) = ( 𝐹 ‘ suc 𝑚 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑚 ) ) |
6 |
5
|
bnj1113 |
⊢ ( 𝑖 = 𝑚 → ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
7 |
4 6
|
eqeq12d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐹 ‘ suc 𝑚 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
8 |
3 7
|
imbi12d |
⊢ ( 𝑖 = 𝑚 → ( ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑚 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑚 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
9 |
8
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑚 ∈ ω ( suc 𝑚 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑚 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
10 |
1 9
|
bitri |
⊢ ( 𝜓 ↔ ∀ 𝑚 ∈ ω ( suc 𝑚 ∈ 𝑁 → ( 𝐹 ‘ suc 𝑚 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |