| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj601.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj601.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
bnj601.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
| 4 |
|
bnj601.4 |
⊢ ( 𝜒 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
| 5 |
|
bnj601.5 |
⊢ ( 𝜃 ↔ ∀ 𝑚 ∈ 𝐷 ( 𝑚 E 𝑛 → [ 𝑚 / 𝑛 ] 𝜒 ) ) |
| 6 |
|
biid |
⊢ ( [ 𝑚 / 𝑛 ] 𝜑 ↔ [ 𝑚 / 𝑛 ] 𝜑 ) |
| 7 |
|
biid |
⊢ ( [ 𝑚 / 𝑛 ] 𝜓 ↔ [ 𝑚 / 𝑛 ] 𝜓 ) |
| 8 |
|
biid |
⊢ ( [ 𝑚 / 𝑛 ] 𝜒 ↔ [ 𝑚 / 𝑛 ] 𝜒 ) |
| 9 |
|
bnj602 |
⊢ ( 𝑦 = 𝑧 → pred ( 𝑦 , 𝐴 , 𝑅 ) = pred ( 𝑧 , 𝐴 , 𝑅 ) ) |
| 10 |
9
|
cbviunv |
⊢ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) |
| 11 |
10
|
opeq2i |
⊢ 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 = 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 |
| 12 |
11
|
sneqi |
⊢ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } = { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } |
| 13 |
12
|
uneq2i |
⊢ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) |
| 14 |
|
dfsbcq |
⊢ ( ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) → ( [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜑 ↔ [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜑 ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜑 ↔ [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜑 ) |
| 16 |
|
dfsbcq |
⊢ ( ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) → ( [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜓 ↔ [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜓 ) ) |
| 17 |
13 16
|
ax-mp |
⊢ ( [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜓 ↔ [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜓 ) |
| 18 |
|
dfsbcq |
⊢ ( ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) → ( [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜒 ↔ [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜒 ) ) |
| 19 |
13 18
|
ax-mp |
⊢ ( [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜒 ↔ [ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) / 𝑓 ] 𝜒 ) |
| 20 |
13
|
eqcomi |
⊢ ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
| 21 |
|
biid |
⊢ ( ( 𝑓 Fn 𝑚 ∧ [ 𝑚 / 𝑛 ] 𝜑 ∧ [ 𝑚 / 𝑛 ] 𝜓 ) ↔ ( 𝑓 Fn 𝑚 ∧ [ 𝑚 / 𝑛 ] 𝜑 ∧ [ 𝑚 / 𝑛 ] 𝜓 ) ) |
| 22 |
|
biid |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
| 23 |
|
biid |
⊢ ( ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
| 24 |
|
biid |
⊢ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖 ) ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖 ) ) |
| 25 |
|
biid |
⊢ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) ) |
| 26 |
|
eqid |
⊢ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 27 |
|
eqid |
⊢ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 28 |
|
eqid |
⊢ ∪ 𝑦 ∈ ( ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 29 |
|
eqid |
⊢ ∪ 𝑦 ∈ ( ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑧 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑧 , 𝐴 , 𝑅 ) 〉 } ) ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 30 |
1 2 3 4 5 6 7 8 15 17 19 20 21 22 23 24 25 26 27 28 29 20
|
bnj600 |
⊢ ( 𝑛 ≠ 1o → ( ( 𝑛 ∈ 𝐷 ∧ 𝜃 ) → 𝜒 ) ) |