| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj985.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 2 |
|
bnj985.6 |
⊢ ( 𝜒′ ↔ [ 𝑝 / 𝑛 ] 𝜒 ) |
| 3 |
|
bnj985.9 |
⊢ ( 𝜒″ ↔ [ 𝐺 / 𝑓 ] 𝜒′ ) |
| 4 |
|
bnj985.11 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
| 5 |
|
bnj985.13 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
| 6 |
5
|
bnj918 |
⊢ 𝐺 ∈ V |
| 7 |
1 4
|
bnj984 |
⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ 𝐵 ↔ [ 𝐺 / 𝑓 ] ∃ 𝑛 𝜒 ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( 𝐺 ∈ 𝐵 ↔ [ 𝐺 / 𝑓 ] ∃ 𝑛 𝜒 ) |
| 9 |
|
sbcex2 |
⊢ ( [ 𝐺 / 𝑓 ] ∃ 𝑝 𝜒′ ↔ ∃ 𝑝 [ 𝐺 / 𝑓 ] 𝜒′ ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑝 𝜒 |
| 11 |
10
|
sb8e |
⊢ ( ∃ 𝑛 𝜒 ↔ ∃ 𝑝 [ 𝑝 / 𝑛 ] 𝜒 ) |
| 12 |
|
sbsbc |
⊢ ( [ 𝑝 / 𝑛 ] 𝜒 ↔ [ 𝑝 / 𝑛 ] 𝜒 ) |
| 13 |
12
|
exbii |
⊢ ( ∃ 𝑝 [ 𝑝 / 𝑛 ] 𝜒 ↔ ∃ 𝑝 [ 𝑝 / 𝑛 ] 𝜒 ) |
| 14 |
11 13
|
bitri |
⊢ ( ∃ 𝑛 𝜒 ↔ ∃ 𝑝 [ 𝑝 / 𝑛 ] 𝜒 ) |
| 15 |
14 2
|
bnj133 |
⊢ ( ∃ 𝑛 𝜒 ↔ ∃ 𝑝 𝜒′ ) |
| 16 |
15
|
sbcbii |
⊢ ( [ 𝐺 / 𝑓 ] ∃ 𝑛 𝜒 ↔ [ 𝐺 / 𝑓 ] ∃ 𝑝 𝜒′ ) |
| 17 |
3
|
exbii |
⊢ ( ∃ 𝑝 𝜒″ ↔ ∃ 𝑝 [ 𝐺 / 𝑓 ] 𝜒′ ) |
| 18 |
9 16 17
|
3bitr4i |
⊢ ( [ 𝐺 / 𝑓 ] ∃ 𝑛 𝜒 ↔ ∃ 𝑝 𝜒″ ) |
| 19 |
8 18
|
bitri |
⊢ ( 𝐺 ∈ 𝐵 ↔ ∃ 𝑝 𝜒″ ) |