Metamath Proof Explorer


Theorem brcodir

Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015)

Ref Expression
Assertion brcodir ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝑅𝑅 ) 𝐵 ↔ ∃ 𝑧 ( 𝐴 𝑅 𝑧𝐵 𝑅 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 brcog ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝑅𝑅 ) 𝐵 ↔ ∃ 𝑧 ( 𝐴 𝑅 𝑧𝑧 𝑅 𝐵 ) ) )
2 vex 𝑧 ∈ V
3 brcnvg ( ( 𝑧 ∈ V ∧ 𝐵𝑊 ) → ( 𝑧 𝑅 𝐵𝐵 𝑅 𝑧 ) )
4 2 3 mpan ( 𝐵𝑊 → ( 𝑧 𝑅 𝐵𝐵 𝑅 𝑧 ) )
5 4 anbi2d ( 𝐵𝑊 → ( ( 𝐴 𝑅 𝑧𝑧 𝑅 𝐵 ) ↔ ( 𝐴 𝑅 𝑧𝐵 𝑅 𝑧 ) ) )
6 5 adantl ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴 𝑅 𝑧𝑧 𝑅 𝐵 ) ↔ ( 𝐴 𝑅 𝑧𝐵 𝑅 𝑧 ) ) )
7 6 exbidv ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑧 ( 𝐴 𝑅 𝑧𝑧 𝑅 𝐵 ) ↔ ∃ 𝑧 ( 𝐴 𝑅 𝑧𝐵 𝑅 𝑧 ) ) )
8 1 7 bitrd ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝑅𝑅 ) 𝐵 ↔ ∃ 𝑧 ( 𝐴 𝑅 𝑧𝐵 𝑅 𝑧 ) ) )