Step |
Hyp |
Ref |
Expression |
1 |
|
swoer.1 |
⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) |
2 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) |
3 |
|
df-br |
⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) |
4 |
2 3
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ) |
5 |
1
|
breqi |
⊢ ( 𝐴 𝑅 𝐵 ↔ 𝐴 ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) 𝐵 ) |
6 |
|
brdif |
⊢ ( 𝐴 ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) 𝐵 ↔ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ∧ ¬ 𝐴 ( < ∪ ◡ < ) 𝐵 ) ) |
7 |
5 6
|
bitri |
⊢ ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ∧ ¬ 𝐴 ( < ∪ ◡ < ) 𝐵 ) ) |
8 |
7
|
baib |
⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 → ( 𝐴 𝑅 𝐵 ↔ ¬ 𝐴 ( < ∪ ◡ < ) 𝐵 ) ) |
9 |
4 8
|
syl |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ 𝐴 ( < ∪ ◡ < ) 𝐵 ) ) |
10 |
|
brun |
⊢ ( 𝐴 ( < ∪ ◡ < ) 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 ◡ < 𝐵 ) ) |
11 |
|
brcnvg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ◡ < 𝐵 ↔ 𝐵 < 𝐴 ) ) |
12 |
11
|
orbi2d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 < 𝐵 ∨ 𝐴 ◡ < 𝐵 ) ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
13 |
10 12
|
bitrid |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( < ∪ ◡ < ) 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
14 |
13
|
notbid |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ¬ 𝐴 ( < ∪ ◡ < ) 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
15 |
9 14
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |