Metamath Proof Explorer


Theorem brdifun

Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis swoer.1 R = X × X < ˙ < ˙ -1
Assertion brdifun A X B X A R B ¬ A < ˙ B B < ˙ A

Proof

Step Hyp Ref Expression
1 swoer.1 R = X × X < ˙ < ˙ -1
2 opelxpi A X B X A B X × X
3 df-br A X × X B A B X × X
4 2 3 sylibr A X B X A X × X B
5 1 breqi A R B A X × X < ˙ < ˙ -1 B
6 brdif A X × X < ˙ < ˙ -1 B A X × X B ¬ A < ˙ < ˙ -1 B
7 5 6 bitri A R B A X × X B ¬ A < ˙ < ˙ -1 B
8 7 baib A X × X B A R B ¬ A < ˙ < ˙ -1 B
9 4 8 syl A X B X A R B ¬ A < ˙ < ˙ -1 B
10 brun A < ˙ < ˙ -1 B A < ˙ B A < ˙ -1 B
11 brcnvg A X B X A < ˙ -1 B B < ˙ A
12 11 orbi2d A X B X A < ˙ B A < ˙ -1 B A < ˙ B B < ˙ A
13 10 12 syl5bb A X B X A < ˙ < ˙ -1 B A < ˙ B B < ˙ A
14 13 notbid A X B X ¬ A < ˙ < ˙ -1 B ¬ A < ˙ B B < ˙ A
15 9 14 bitrd A X B X A R B ¬ A < ˙ B B < ˙ A