Metamath Proof Explorer


Theorem brif12

Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024)

Ref Expression
Assertion brif12 ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝑅 if ( 𝜑 , 𝐶 , 𝐷 ) ↔ if- ( 𝜑 , 𝐴 𝑅 𝐶 , 𝐵 𝑅 𝐷 ) )

Proof

Step Hyp Ref Expression
1 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 )
2 iftrue ( 𝜑 → if ( 𝜑 , 𝐶 , 𝐷 ) = 𝐶 )
3 1 2 breq12d ( 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝑅 if ( 𝜑 , 𝐶 , 𝐷 ) ↔ 𝐴 𝑅 𝐶 ) )
4 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 )
5 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝐷 ) = 𝐷 )
6 4 5 breq12d ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝑅 if ( 𝜑 , 𝐶 , 𝐷 ) ↔ 𝐵 𝑅 𝐷 ) )
7 3 6 casesifp ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝑅 if ( 𝜑 , 𝐶 , 𝐷 ) ↔ if- ( 𝜑 , 𝐴 𝑅 𝐶 , 𝐵 𝑅 𝐷 ) )