Description: A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | brnonrel | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ¬ 𝑋 ( 𝐴 ∖ ◡ ◡ 𝐴 ) 𝑌 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 | ⊢ ¬ 𝑌 ∅ 𝑋 | |
2 | brcnvg | ⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑌 ◡ ( 𝐴 ∖ ◡ ◡ 𝐴 ) 𝑋 ↔ 𝑋 ( 𝐴 ∖ ◡ ◡ 𝐴 ) 𝑌 ) ) | |
3 | 2 | ancoms | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 ◡ ( 𝐴 ∖ ◡ ◡ 𝐴 ) 𝑋 ↔ 𝑋 ( 𝐴 ∖ ◡ ◡ 𝐴 ) 𝑌 ) ) |
4 | cnvnonrel | ⊢ ◡ ( 𝐴 ∖ ◡ ◡ 𝐴 ) = ∅ | |
5 | 4 | breqi | ⊢ ( 𝑌 ◡ ( 𝐴 ∖ ◡ ◡ 𝐴 ) 𝑋 ↔ 𝑌 ∅ 𝑋 ) |
6 | 3 5 | bitr3di | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ( 𝐴 ∖ ◡ ◡ 𝐴 ) 𝑌 ↔ 𝑌 ∅ 𝑋 ) ) |
7 | 1 6 | mtbiri | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ¬ 𝑋 ( 𝐴 ∖ ◡ ◡ 𝐴 ) 𝑌 ) |