Metamath Proof Explorer


Theorem brnonrel

Description: A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020)

Ref Expression
Assertion brnonrel ( ( 𝑋𝑈𝑌𝑉 ) → ¬ 𝑋 ( 𝐴 𝐴 ) 𝑌 )

Proof

Step Hyp Ref Expression
1 br0 ¬ 𝑌𝑋
2 brcnvg ( ( 𝑌𝑉𝑋𝑈 ) → ( 𝑌 ( 𝐴 𝐴 ) 𝑋𝑋 ( 𝐴 𝐴 ) 𝑌 ) )
3 2 ancoms ( ( 𝑋𝑈𝑌𝑉 ) → ( 𝑌 ( 𝐴 𝐴 ) 𝑋𝑋 ( 𝐴 𝐴 ) 𝑌 ) )
4 cnvnonrel ( 𝐴 𝐴 ) = ∅
5 4 breqi ( 𝑌 ( 𝐴 𝐴 ) 𝑋𝑌𝑋 )
6 3 5 bitr3di ( ( 𝑋𝑈𝑌𝑉 ) → ( 𝑋 ( 𝐴 𝐴 ) 𝑌𝑌𝑋 ) )
7 1 6 mtbiri ( ( 𝑋𝑈𝑌𝑉 ) → ¬ 𝑋 ( 𝐴 𝐴 ) 𝑌 )