Metamath Proof Explorer


Theorem brnonrel

Description: A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020)

Ref Expression
Assertion brnonrel
|- ( ( X e. U /\ Y e. V ) -> -. X ( A \ `' `' A ) Y )

Proof

Step Hyp Ref Expression
1 br0
 |-  -. Y (/) X
2 brcnvg
 |-  ( ( Y e. V /\ X e. U ) -> ( Y `' ( A \ `' `' A ) X <-> X ( A \ `' `' A ) Y ) )
3 2 ancoms
 |-  ( ( X e. U /\ Y e. V ) -> ( Y `' ( A \ `' `' A ) X <-> X ( A \ `' `' A ) Y ) )
4 cnvnonrel
 |-  `' ( A \ `' `' A ) = (/)
5 4 breqi
 |-  ( Y `' ( A \ `' `' A ) X <-> Y (/) X )
6 3 5 bitr3di
 |-  ( ( X e. U /\ Y e. V ) -> ( X ( A \ `' `' A ) Y <-> Y (/) X ) )
7 1 6 mtbiri
 |-  ( ( X e. U /\ Y e. V ) -> -. X ( A \ `' `' A ) Y )