Metamath Proof Explorer


Theorem cantnfdm

Description: The domain of the Cantor normal form function (in later lemmas we will use dom ( A CNF B ) to abbreviate "the set of finitely supported functions from B to A "). (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnffval.s 𝑆 = { 𝑔 ∈ ( 𝐴m 𝐵 ) ∣ 𝑔 finSupp ∅ }
cantnffval.a ( 𝜑𝐴 ∈ On )
cantnffval.b ( 𝜑𝐵 ∈ On )
Assertion cantnfdm ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 cantnffval.s 𝑆 = { 𝑔 ∈ ( 𝐴m 𝐵 ) ∣ 𝑔 finSupp ∅ }
2 cantnffval.a ( 𝜑𝐴 ∈ On )
3 cantnffval.b ( 𝜑𝐵 ∈ On )
4 1 2 3 cantnffval ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓𝑆 OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ) )
5 4 dmeqd ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = dom ( 𝑓𝑆 OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ) )
6 fvex ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ∈ V
7 6 csbex OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ∈ V
8 7 rgenw 𝑓𝑆 OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ∈ V
9 dmmptg ( ∀ 𝑓𝑆 OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ∈ V → dom ( 𝑓𝑆 OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ) = 𝑆 )
10 8 9 ax-mp dom ( 𝑓𝑆 OrdIso ( E , ( 𝑓 supp ∅ ) ) / ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴o ( 𝑘 ) ) ·o ( 𝑓 ‘ ( 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ) ) = 𝑆
11 5 10 eqtrdi ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = 𝑆 )