| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1onn | 
							⊢ 1o  ∈  ω  | 
						
						
							| 2 | 
							
								
							 | 
							cardnn | 
							⊢ ( 1o  ∈  ω  →  ( card ‘ 1o )  =  1o )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ ( card ‘ 1o )  =  1o  | 
						
						
							| 4 | 
							
								
							 | 
							1n0 | 
							⊢ 1o  ≠  ∅  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqnetri | 
							⊢ ( card ‘ 1o )  ≠  ∅  | 
						
						
							| 6 | 
							
								
							 | 
							carden2a | 
							⊢ ( ( ( card ‘ 1o )  =  ( card ‘ 𝐴 )  ∧  ( card ‘ 1o )  ≠  ∅ )  →  1o  ≈  𝐴 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpan2 | 
							⊢ ( ( card ‘ 1o )  =  ( card ‘ 𝐴 )  →  1o  ≈  𝐴 )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqcoms | 
							⊢ ( ( card ‘ 𝐴 )  =  ( card ‘ 1o )  →  1o  ≈  𝐴 )  | 
						
						
							| 9 | 
							
								8
							 | 
							ensymd | 
							⊢ ( ( card ‘ 𝐴 )  =  ( card ‘ 1o )  →  𝐴  ≈  1o )  | 
						
						
							| 10 | 
							
								
							 | 
							carden2b | 
							⊢ ( 𝐴  ≈  1o  →  ( card ‘ 𝐴 )  =  ( card ‘ 1o ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							impbii | 
							⊢ ( ( card ‘ 𝐴 )  =  ( card ‘ 1o )  ↔  𝐴  ≈  1o )  | 
						
						
							| 12 | 
							
								3
							 | 
							eqeq2i | 
							⊢ ( ( card ‘ 𝐴 )  =  ( card ‘ 1o )  ↔  ( card ‘ 𝐴 )  =  1o )  | 
						
						
							| 13 | 
							
								
							 | 
							en1 | 
							⊢ ( 𝐴  ≈  1o  ↔  ∃ 𝑥 𝐴  =  { 𝑥 } )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							3bitr3i | 
							⊢ ( ( card ‘ 𝐴 )  =  1o  ↔  ∃ 𝑥 𝐴  =  { 𝑥 } )  |