Metamath Proof Explorer


Theorem card1

Description: A set has cardinality one iff it is a singleton. (Contributed by Mario Carneiro, 10-Jan-2013)

Ref Expression
Assertion card1 cardA=1𝑜xA=x

Proof

Step Hyp Ref Expression
1 1onn 1𝑜ω
2 cardnn 1𝑜ωcard1𝑜=1𝑜
3 1 2 ax-mp card1𝑜=1𝑜
4 1n0 1𝑜
5 3 4 eqnetri card1𝑜
6 carden2a card1𝑜=cardAcard1𝑜1𝑜A
7 5 6 mpan2 card1𝑜=cardA1𝑜A
8 7 eqcoms cardA=card1𝑜1𝑜A
9 8 ensymd cardA=card1𝑜A1𝑜
10 carden2b A1𝑜cardA=card1𝑜
11 9 10 impbii cardA=card1𝑜A1𝑜
12 3 eqeq2i cardA=card1𝑜cardA=1𝑜
13 en1 A1𝑜xA=x
14 11 12 13 3bitr3i cardA=1𝑜xA=x