Description: If two sets are equinumerous, then they have equal cardinalities. (This assertion and carden2a are meant to replace carden in ZF without AC.) (Contributed by Mario Carneiro, 9-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | carden2b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardne | |
|
2 | ennum | |
|
3 | 2 | biimpa | |
4 | cardid2 | |
|
5 | 3 4 | syl | |
6 | ensym | |
|
7 | 6 | adantr | |
8 | entr | |
|
9 | 5 7 8 | syl2anc | |
10 | 1 9 | nsyl3 | |
11 | cardon | |
|
12 | cardon | |
|
13 | ontri1 | |
|
14 | 11 12 13 | mp2an | |
15 | 10 14 | sylibr | |
16 | cardne | |
|
17 | cardid2 | |
|
18 | id | |
|
19 | entr | |
|
20 | 17 18 19 | syl2anr | |
21 | 16 20 | nsyl3 | |
22 | ontri1 | |
|
23 | 12 11 22 | mp2an | |
24 | 21 23 | sylibr | |
25 | 15 24 | eqssd | |
26 | ndmfv | |
|
27 | 26 | adantl | |
28 | 2 | notbid | |
29 | 28 | biimpa | |
30 | ndmfv | |
|
31 | 29 30 | syl | |
32 | 27 31 | eqtr4d | |
33 | 25 32 | pm2.61dan | |