Metamath Proof Explorer


Theorem carden2b

Description: If two sets are equinumerous, then they have equal cardinalities. (This assertion and carden2a are meant to replace carden in ZF without AC.) (Contributed by Mario Carneiro, 9-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion carden2b ABcardA=cardB

Proof

Step Hyp Ref Expression
1 cardne cardBcardA¬cardBA
2 ennum ABAdomcardBdomcard
3 2 biimpa ABAdomcardBdomcard
4 cardid2 BdomcardcardBB
5 3 4 syl ABAdomcardcardBB
6 ensym ABBA
7 6 adantr ABAdomcardBA
8 entr cardBBBAcardBA
9 5 7 8 syl2anc ABAdomcardcardBA
10 1 9 nsyl3 ABAdomcard¬cardBcardA
11 cardon cardAOn
12 cardon cardBOn
13 ontri1 cardAOncardBOncardAcardB¬cardBcardA
14 11 12 13 mp2an cardAcardB¬cardBcardA
15 10 14 sylibr ABAdomcardcardAcardB
16 cardne cardAcardB¬cardAB
17 cardid2 AdomcardcardAA
18 id ABAB
19 entr cardAAABcardAB
20 17 18 19 syl2anr ABAdomcardcardAB
21 16 20 nsyl3 ABAdomcard¬cardAcardB
22 ontri1 cardBOncardAOncardBcardA¬cardAcardB
23 12 11 22 mp2an cardBcardA¬cardAcardB
24 21 23 sylibr ABAdomcardcardBcardA
25 15 24 eqssd ABAdomcardcardA=cardB
26 ndmfv ¬AdomcardcardA=
27 26 adantl AB¬AdomcardcardA=
28 2 notbid AB¬Adomcard¬Bdomcard
29 28 biimpa AB¬Adomcard¬Bdomcard
30 ndmfv ¬BdomcardcardB=
31 29 30 syl AB¬AdomcardcardB=
32 27 31 eqtr4d AB¬AdomcardcardA=cardB
33 25 32 pm2.61dan ABcardA=cardB