| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cardon | ⊢ ( card ‘ 𝐴 )  ∈  On | 
						
							| 2 | 1 | oneli | ⊢ ( 𝑥  ∈  ( card ‘ 𝐴 )  →  𝑥  ∈  On ) | 
						
							| 3 | 2 | pm4.71ri | ⊢ ( 𝑥  ∈  ( card ‘ 𝐴 )  ↔  ( 𝑥  ∈  On  ∧  𝑥  ∈  ( card ‘ 𝐴 ) ) ) | 
						
							| 4 |  | cardsdomel | ⊢ ( ( 𝑥  ∈  On  ∧  𝐴  ∈  dom  card )  →  ( 𝑥  ≺  𝐴  ↔  𝑥  ∈  ( card ‘ 𝐴 ) ) ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝑥  ∈  On )  →  ( 𝑥  ≺  𝐴  ↔  𝑥  ∈  ( card ‘ 𝐴 ) ) ) | 
						
							| 6 | 5 | pm5.32da | ⊢ ( 𝐴  ∈  dom  card  →  ( ( 𝑥  ∈  On  ∧  𝑥  ≺  𝐴 )  ↔  ( 𝑥  ∈  On  ∧  𝑥  ∈  ( card ‘ 𝐴 ) ) ) ) | 
						
							| 7 | 3 6 | bitr4id | ⊢ ( 𝐴  ∈  dom  card  →  ( 𝑥  ∈  ( card ‘ 𝐴 )  ↔  ( 𝑥  ∈  On  ∧  𝑥  ≺  𝐴 ) ) ) | 
						
							| 8 | 7 | eqabdv | ⊢ ( 𝐴  ∈  dom  card  →  ( card ‘ 𝐴 )  =  { 𝑥  ∣  ( 𝑥  ∈  On  ∧  𝑥  ≺  𝐴 ) } ) | 
						
							| 9 |  | df-rab | ⊢ { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  =  { 𝑥  ∣  ( 𝑥  ∈  On  ∧  𝑥  ≺  𝐴 ) } | 
						
							| 10 | 8 9 | eqtr4di | ⊢ ( 𝐴  ∈  dom  card  →  ( card ‘ 𝐴 )  =  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } ) |