Metamath Proof Explorer


Theorem cbvoprab123vw

Description: Change all bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab123vw.1 ( ( ( 𝑥 = 𝑤𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ( 𝜓𝜒 ) )
Assertion cbvoprab123vw { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∣ 𝜒 }

Proof

Step Hyp Ref Expression
1 cbvoprab123vw.1 ( ( ( 𝑥 = 𝑤𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ( 𝜓𝜒 ) )
2 simpll ( ( ( 𝑥 = 𝑤𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → 𝑥 = 𝑤 )
3 simplr ( ( ( 𝑥 = 𝑤𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → 𝑦 = 𝑢 )
4 2 3 opeq12d ( ( ( 𝑥 = 𝑤𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑤 , 𝑢 ⟩ )
5 simpr ( ( ( 𝑥 = 𝑤𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → 𝑧 = 𝑣 )
6 4 5 opeq12d ( ( ( 𝑥 = 𝑤𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ )
7 6 eqeq2d ( ( ( 𝑥 = 𝑤𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ↔ 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ) )
8 7 1 anbi12d ( ( ( 𝑥 = 𝑤𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ( ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
9 8 cbvexdvaw ( ( 𝑥 = 𝑤𝑦 = 𝑢 ) → ( ∃ 𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
10 9 cbvex2vw ( ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑤𝑢𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) )
11 10 abbii { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) } = { 𝑡 ∣ ∃ 𝑤𝑢𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) }
12 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) }
13 df-oprab { ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∣ 𝜒 } = { 𝑡 ∣ ∃ 𝑤𝑢𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) }
14 11 12 13 3eqtr4i { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∣ 𝜒 }