Metamath Proof Explorer


Theorem cbvrexcsf

Description: A more general version of cbvrexf that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (Proof shortened by Mario Carneiro, 7-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralcsf.1 𝑦 𝐴
cbvralcsf.2 𝑥 𝐵
cbvralcsf.3 𝑦 𝜑
cbvralcsf.4 𝑥 𝜓
cbvralcsf.5 ( 𝑥 = 𝑦𝐴 = 𝐵 )
cbvralcsf.6 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrexcsf ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvralcsf.1 𝑦 𝐴
2 cbvralcsf.2 𝑥 𝐵
3 cbvralcsf.3 𝑦 𝜑
4 cbvralcsf.4 𝑥 𝜓
5 cbvralcsf.5 ( 𝑥 = 𝑦𝐴 = 𝐵 )
6 cbvralcsf.6 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
7 3 nfn 𝑦 ¬ 𝜑
8 4 nfn 𝑥 ¬ 𝜓
9 6 notbid ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
10 1 2 7 8 5 9 cbvralcsf ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ∀ 𝑦𝐵 ¬ 𝜓 )
11 10 notbii ( ¬ ∀ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑦𝐵 ¬ 𝜓 )
12 dfrex2 ( ∃ 𝑥𝐴 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜑 )
13 dfrex2 ( ∃ 𝑦𝐵 𝜓 ↔ ¬ ∀ 𝑦𝐵 ¬ 𝜓 )
14 11 12 13 3bitr4i ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐵 𝜓 )