Metamath Proof Explorer


Theorem ccat2s1lenOLD

Description: Obsolete version of ccat2s1len as of 14-Jan-2024. The length of the concatenation of two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ccat2s1lenOLD ( ( 𝑋𝑉𝑌𝑉 ) → ( ♯ ‘ ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ) = 2 )

Proof

Step Hyp Ref Expression
1 s1cl ( 𝑋𝑉 → ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 )
2 s1cl ( 𝑌𝑉 → ⟨“ 𝑌 ”⟩ ∈ Word 𝑉 )
3 ccatlenOLD ( ( ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 ∧ ⟨“ 𝑌 ”⟩ ∈ Word 𝑉 ) → ( ♯ ‘ ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ) = ( ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) + ( ♯ ‘ ⟨“ 𝑌 ”⟩ ) ) )
4 s1len ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) = 1
5 s1len ( ♯ ‘ ⟨“ 𝑌 ”⟩ ) = 1
6 4 5 oveq12i ( ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) + ( ♯ ‘ ⟨“ 𝑌 ”⟩ ) ) = ( 1 + 1 )
7 1p1e2 ( 1 + 1 ) = 2
8 6 7 eqtri ( ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) + ( ♯ ‘ ⟨“ 𝑌 ”⟩ ) ) = 2
9 3 8 eqtrdi ( ( ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 ∧ ⟨“ 𝑌 ”⟩ ∈ Word 𝑉 ) → ( ♯ ‘ ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ) = 2 )
10 1 2 9 syl2an ( ( 𝑋𝑉𝑌𝑉 ) → ( ♯ ‘ ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ) = 2 )