Metamath Proof Explorer
		
		
		
		Description:  The concatenation of a word with a singleton word (which can be over a
     different alphabet) is a word.  (Contributed by AV, 5-Mar-2022)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | ccatws1clv | ⊢  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ++  〈“ 𝑋 ”〉 )  ∈  Word  V ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdv | ⊢ ( 𝑊  ∈  Word  𝑉  →  𝑊  ∈  Word  V ) | 
						
							| 2 |  | s1cli | ⊢ 〈“ 𝑋 ”〉  ∈  Word  V | 
						
							| 3 |  | ccatcl | ⊢ ( ( 𝑊  ∈  Word  V  ∧  〈“ 𝑋 ”〉  ∈  Word  V )  →  ( 𝑊  ++  〈“ 𝑋 ”〉 )  ∈  Word  V ) | 
						
							| 4 | 1 2 3 | sylancl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ++  〈“ 𝑋 ”〉 )  ∈  Word  V ) |