Metamath Proof Explorer
		
		
		
		Description:  Part of proof of Lemma E in Crawley p. 113.  (Contributed by NM, 13-Jun-2012)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | cdleme0.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
					
						|  |  | cdleme0.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
					
						|  |  | cdleme0.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
					
						|  |  | cdleme0.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
					
						|  |  | cdleme0.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
					
						|  |  | cdleme0.u | ⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) | 
					
						|  |  | cdleme0c.3 | ⊢ 𝑉  =  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) | 
				
					|  | Assertion | cdleme0dN | ⊢  ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑅 ) )  →  𝑉  ∈  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdleme0.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdleme0.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdleme0.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdleme0.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdleme0.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdleme0.u | ⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) | 
						
							| 7 |  | cdleme0c.3 | ⊢ 𝑉  =  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) | 
						
							| 8 | 1 2 3 4 5 7 | lhpat2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑅 ) )  →  𝑉  ∈  𝐴 ) |