Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme32.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme32.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme32.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme32.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme32.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme32.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme32.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme32.c |
⊢ 𝐶 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme32.d |
⊢ 𝐷 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme32.e |
⊢ 𝐸 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑠 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
11 |
|
cdleme32.i |
⊢ 𝐼 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐸 ) ) |
12 |
|
cdleme32.n |
⊢ 𝑁 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐶 ) |
13 |
|
cdleme32.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
14 |
|
cdleme32.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) |
15 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
16 |
|
anass |
⊢ ( ( ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ↔ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) |
17 |
|
eqid |
⊢ ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
18 |
13 14 17
|
cdleme31fv1 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑋 ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
cdleme32fvcl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
21 |
20
|
adantrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
22 |
19 21
|
riotasvd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) ∧ 𝐵 ∈ V ) → ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
23 |
16 22
|
syl5bi |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) ∧ 𝐵 ∈ V ) → ( ( ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
24 |
15 23
|
mpan2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( ( ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
25 |
24
|
3impia |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |