Metamath Proof Explorer


Theorem cdleme51finvfvN

Description: Part of proof of Lemma E in Crawley p. 113. TODO: fix comment. (Contributed by NM, 14-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemef50.b 𝐵 = ( Base ‘ 𝐾 )
cdlemef50.l = ( le ‘ 𝐾 )
cdlemef50.j = ( join ‘ 𝐾 )
cdlemef50.m = ( meet ‘ 𝐾 )
cdlemef50.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemef50.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemef50.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemef50.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemefs50.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemef50.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
cdlemef51.v 𝑉 = ( ( 𝑄 𝑃 ) 𝑊 )
cdlemef51.n 𝑁 = ( ( 𝑣 𝑉 ) ( 𝑃 ( ( 𝑄 𝑣 ) 𝑊 ) ) )
cdlemefs51.o 𝑂 = ( ( 𝑄 𝑃 ) ( 𝑁 ( ( 𝑢 𝑣 ) 𝑊 ) ) )
cdlemef51.g 𝐺 = ( 𝑎𝐵 ↦ if ( ( 𝑄𝑃 ∧ ¬ 𝑎 𝑊 ) , ( 𝑐𝐵𝑢𝐴 ( ( ¬ 𝑢 𝑊 ∧ ( 𝑢 ( 𝑎 𝑊 ) ) = 𝑎 ) → 𝑐 = ( if ( 𝑢 ( 𝑄 𝑃 ) , ( 𝑏𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑄 𝑃 ) ) → 𝑏 = 𝑂 ) ) , 𝑢 / 𝑣 𝑁 ) ( 𝑎 𝑊 ) ) ) ) , 𝑎 ) )
Assertion cdleme51finvfvN ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) → ( 𝐹𝑋 ) = ( 𝐺𝑋 ) )

Proof

Step Hyp Ref Expression
1 cdlemef50.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemef50.l = ( le ‘ 𝐾 )
3 cdlemef50.j = ( join ‘ 𝐾 )
4 cdlemef50.m = ( meet ‘ 𝐾 )
5 cdlemef50.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemef50.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemef50.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdlemef50.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdlemefs50.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdlemef50.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
11 cdlemef51.v 𝑉 = ( ( 𝑄 𝑃 ) 𝑊 )
12 cdlemef51.n 𝑁 = ( ( 𝑣 𝑉 ) ( 𝑃 ( ( 𝑄 𝑣 ) 𝑊 ) ) )
13 cdlemefs51.o 𝑂 = ( ( 𝑄 𝑃 ) ( 𝑁 ( ( 𝑢 𝑣 ) 𝑊 ) ) )
14 cdlemef51.g 𝐺 = ( 𝑎𝐵 ↦ if ( ( 𝑄𝑃 ∧ ¬ 𝑎 𝑊 ) , ( 𝑐𝐵𝑢𝐴 ( ( ¬ 𝑢 𝑊 ∧ ( 𝑢 ( 𝑎 𝑊 ) ) = 𝑎 ) → 𝑐 = ( if ( 𝑢 ( 𝑄 𝑃 ) , ( 𝑏𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑄 𝑃 ) ) → 𝑏 = 𝑂 ) ) , 𝑢 / 𝑣 𝑁 ) ( 𝑎 𝑊 ) ) ) ) , 𝑎 ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme48fgv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = 𝑋 )
16 1 2 3 4 5 6 7 8 9 10 cdleme50f1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹 : 𝐵1-1-onto𝐵 )
17 16 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) → 𝐹 : 𝐵1-1-onto𝐵 )
18 1 2 3 4 5 6 11 12 13 14 cdlemeg46fvcl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) → ( 𝐺𝑋 ) ∈ 𝐵 )
19 f1ocnvfv ( ( 𝐹 : 𝐵1-1-onto𝐵 ∧ ( 𝐺𝑋 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝐺𝑋 ) ) = 𝑋 → ( 𝐹𝑋 ) = ( 𝐺𝑋 ) ) )
20 17 18 19 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) → ( ( 𝐹 ‘ ( 𝐺𝑋 ) ) = 𝑋 → ( 𝐹𝑋 ) = ( 𝐺𝑋 ) ) )
21 15 20 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) → ( 𝐹𝑋 ) = ( 𝐺𝑋 ) )