Metamath Proof Explorer


Theorem cdlemg2dN

Description: This theorem can be used to shorten G = hypothesis. TODO: Fix comment. (Contributed by NM, 21-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg2.b 𝐵 = ( Base ‘ 𝐾 )
cdlemg2.l = ( le ‘ 𝐾 )
cdlemg2.j = ( join ‘ 𝐾 )
cdlemg2.m = ( meet ‘ 𝐾 )
cdlemg2.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg2.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg2.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemg2.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemg2.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemg2.g 𝐺 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
Assertion cdlemg2dN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑄 ) ) → 𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 cdlemg2.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemg2.l = ( le ‘ 𝐾 )
3 cdlemg2.j = ( join ‘ 𝐾 )
4 cdlemg2.m = ( meet ‘ 𝐾 )
5 cdlemg2.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemg2.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemg2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemg2.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
9 cdlemg2.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
10 cdlemg2.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 cdlemg2.g 𝐺 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
12 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑄 ) ) → 𝐹𝑇 )
13 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑄 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
15 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑄 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
16 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑄 ) ) → ( 𝐹𝑃 ) = 𝑄 )
17 1 2 3 4 5 6 7 8 9 10 11 cdlemg2cN ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → ( 𝐹𝑇𝐹 = 𝐺 ) )
18 13 14 15 16 17 syl31anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑄 ) ) → ( 𝐹𝑇𝐹 = 𝐺 ) )
19 12 18 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑄 ) ) → 𝐹 = 𝐺 )