Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg2.b |
|- B = ( Base ` K ) |
2 |
|
cdlemg2.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemg2.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemg2.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemg2.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemg2.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemg2.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemg2.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
9 |
|
cdlemg2.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
10 |
|
cdlemg2.e |
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) |
11 |
|
cdlemg2.g |
|- G = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) |
12 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ ( F ` P ) = Q ) ) -> F e. T ) |
13 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ ( F ` P ) = Q ) ) -> ( K e. HL /\ W e. H ) ) |
14 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ ( F ` P ) = Q ) ) -> ( P e. A /\ -. P .<_ W ) ) |
15 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ ( F ` P ) = Q ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
16 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ ( F ` P ) = Q ) ) -> ( F ` P ) = Q ) |
17 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemg2cN |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = Q ) -> ( F e. T <-> F = G ) ) |
18 |
13 14 15 16 17
|
syl31anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ ( F ` P ) = Q ) ) -> ( F e. T <-> F = G ) ) |
19 |
12 18
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ ( F ` P ) = Q ) ) -> F = G ) |