| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg2.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | cdlemg2.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | cdlemg2.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | cdlemg2.m |  |-  ./\ = ( meet ` K ) | 
						
							| 5 |  | cdlemg2.a |  |-  A = ( Atoms ` K ) | 
						
							| 6 |  | cdlemg2.h |  |-  H = ( LHyp ` K ) | 
						
							| 7 |  | cdlemg2.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 8 |  | cdlemg2.u |  |-  U = ( ( P .\/ Q ) ./\ W ) | 
						
							| 9 |  | cdlemg2.d |  |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) | 
						
							| 10 |  | cdlemg2.e |  |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) | 
						
							| 11 |  | cdlemg2.g |  |-  G = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) | 
						
							| 12 | 2 5 6 7 | cdlemg1cN |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = Q ) -> ( F e. T <-> F = ( iota_ f e. T ( f ` P ) = Q ) ) ) | 
						
							| 13 |  | eqid |  |-  ( iota_ f e. T ( f ` P ) = Q ) = ( iota_ f e. T ( f ` P ) = Q ) | 
						
							| 14 | 1 2 3 4 5 6 8 9 10 11 7 13 | cdlemg1b2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ f e. T ( f ` P ) = Q ) = G ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = Q ) -> ( iota_ f e. T ( f ` P ) = Q ) = G ) | 
						
							| 16 | 15 | eqeq2d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = Q ) -> ( F = ( iota_ f e. T ( f ` P ) = Q ) <-> F = G ) ) | 
						
							| 17 | 12 16 | bitrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) = Q ) -> ( F e. T <-> F = G ) ) |