Metamath Proof Explorer


Theorem cdlemk42yN

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 20-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk5.l = ( le ‘ 𝐾 )
cdlemk5.j = ( join ‘ 𝐾 )
cdlemk5.m = ( meet ‘ 𝐾 )
cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
Assertion cdlemk42yN ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝐺 / 𝑔 𝑋𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk5.l = ( le ‘ 𝐾 )
3 cdlemk5.j = ( join ‘ 𝐾 )
4 cdlemk5.m = ( meet ‘ 𝐾 )
5 cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
10 cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
11 cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
12 1 2 3 4 5 6 7 8 9 10 11 cdlemk42 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝐺 / 𝑔 𝑋𝑃 ) = 𝐺 / 𝑔 𝑌 )
13 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝐺𝑇 )
14 10 cdlemk41 ( 𝐺𝑇 𝐺 / 𝑔 𝑌 = ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) )
15 13 14 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝐺 / 𝑔 𝑌 = ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) )
16 12 15 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝐺 / 𝑔 𝑋𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) )