Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk5.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemk5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemk5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemk5.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk5.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemk5.z |
⊢ 𝑍 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) |
10 |
|
cdlemk5.y |
⊢ 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) |
11 |
|
cdlemk5b.s |
⊢ 𝑆 = ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑖 ∈ 𝑇 ( 𝑖 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑓 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑓 ∘ ◡ 𝐹 ) ) ) ) ) ) |
12 |
|
cdlemk5b.u1 |
⊢ 𝑉 = ( 𝑑 ∈ 𝑇 , 𝑒 ∈ 𝑇 ↦ ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑒 ) ) ∧ ( ( ( 𝑆 ‘ 𝑑 ) ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑒 ∘ ◡ 𝑑 ) ) ) ) ) ) |
13 |
|
cdlemk5.o2 |
⊢ 𝑄 = ( 𝑆 ‘ 𝑏 ) |
14 |
|
cdlemk5.u2 |
⊢ 𝐶 = ( 𝑒 ∈ 𝑇 ↦ ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑒 ) ) ∧ ( ( 𝑄 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑒 ∘ ◡ 𝑏 ) ) ) ) ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemky |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑌 = ( ( 𝑏 𝑉 𝐺 ) ‘ 𝑃 ) ) |
16 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝑏 ∈ 𝑇 ) |
17 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝐺 ∈ 𝑇 ) |
18 |
1 2 3 4 5 6 7 8 11 12 13 14
|
cdlemkuu |
⊢ ( ( 𝑏 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑏 𝑉 𝐺 ) = ( 𝐶 ‘ 𝐺 ) ) |
19 |
16 17 18
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝑏 𝑉 𝐺 ) = ( 𝐶 ‘ 𝐺 ) ) |
20 |
19
|
fveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( ( 𝑏 𝑉 𝐺 ) ‘ 𝑃 ) = ( ( 𝐶 ‘ 𝐺 ) ‘ 𝑃 ) ) |
21 |
15 20
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑌 = ( ( 𝐶 ‘ 𝐺 ) ‘ 𝑃 ) ) |