Metamath Proof Explorer


Theorem ceicl

Description: The ceiling function returns an integer (closure law). (Contributed by Jeff Hankins, 10-Jun-2007)

Ref Expression
Assertion ceicl ( 𝐴 ∈ ℝ → - ( ⌊ ‘ - 𝐴 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
2 1 flcld ( 𝐴 ∈ ℝ → ( ⌊ ‘ - 𝐴 ) ∈ ℤ )
3 2 znegcld ( 𝐴 ∈ ℝ → - ( ⌊ ‘ - 𝐴 ) ∈ ℤ )