Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The universal class ceqsexv2dOLD  
				
		 
		
			
		 
		Description:   Obsolete version of ceqsexv2d  as of 5-Jun-2025.  (Contributed by Thierry Arnoux , 10-Sep-2016)   (Proof modification is discouraged.) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ceqsexv2dOLD.1 ⊢  𝐴   ∈  V  
					
						ceqsexv2dOLD.2 ⊢  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  
					
						ceqsexv2dOLD.3 ⊢  𝜓   
				
					Assertion 
					ceqsexv2dOLD ⊢   ∃ 𝑥  𝜑   
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ceqsexv2dOLD.1 ⊢  𝐴   ∈  V  
						
							2 
								
							 
							ceqsexv2dOLD.2 ⊢  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  
						
							3 
								
							 
							ceqsexv2dOLD.3 ⊢  𝜓   
						
							4 
								1  2 
							 
							ceqsexv ⊢  ( ∃ 𝑥  ( 𝑥   =  𝐴   ∧  𝜑  )  ↔  𝜓  )  
						
							5 
								4 
							 
							biimpri ⊢  ( 𝜓   →  ∃ 𝑥  ( 𝑥   =  𝐴   ∧  𝜑  ) )  
						
							6 
								
							 
							exsimpr ⊢  ( ∃ 𝑥  ( 𝑥   =  𝐴   ∧  𝜑  )  →  ∃ 𝑥  𝜑  )  
						
							7 
								3  5  6 
							 
							mp2b ⊢  ∃ 𝑥  𝜑