| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgcgrxfr.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tgcgrxfr.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | tgcgrxfr.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | tgcgrxfr.r | ⊢  ∼   =  ( cgrG ‘ 𝐺 ) | 
						
							| 5 |  | tgcgrxfr.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | tgbtwnxfr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | tgbtwnxfr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 8 |  | tgbtwnxfr.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 9 |  | tgbtwnxfr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 10 |  | tgbtwnxfr.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 11 |  | tgbtwnxfr.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 12 |  | tgbtwnxfr.2 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∼  〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3swap12 | ⊢ ( 𝜑  →  〈“ 𝐵 𝐴 𝐶 ”〉  ∼  〈“ 𝐸 𝐷 𝐹 ”〉 ) | 
						
							| 14 | 1 2 3 4 5 7 6 8 10 9 11 13 | cgr3swap23 | ⊢ ( 𝜑  →  〈“ 𝐵 𝐶 𝐴 ”〉  ∼  〈“ 𝐸 𝐹 𝐷 ”〉 ) |