Step |
Hyp |
Ref |
Expression |
1 |
|
tgcgrxfr.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tgcgrxfr.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
tgcgrxfr.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tgcgrxfr.r |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
5 |
|
tgcgrxfr.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
tgbtwnxfr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
tgbtwnxfr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
8 |
|
tgbtwnxfr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
9 |
|
tgbtwnxfr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
10 |
|
tgbtwnxfr.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
11 |
|
tgbtwnxfr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
12 |
|
tgbtwnxfr.2 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cgr3simp1 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
14 |
13
|
eqcomd |
⊢ ( 𝜑 → ( 𝐷 − 𝐸 ) = ( 𝐴 − 𝐵 ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cgr3simp2 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
16 |
15
|
eqcomd |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) = ( 𝐵 − 𝐶 ) ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cgr3simp3 |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
18 |
17
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 − 𝐷 ) = ( 𝐶 − 𝐴 ) ) |
19 |
1 2 4 5 9 10 11 6 7 8 14 16 18
|
trgcgr |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ∼ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |