| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgcgrxfr.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgcgrxfr.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tgcgrxfr.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tgcgrxfr.r |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
| 5 |
|
tgcgrxfr.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
tgbtwnxfr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
tgbtwnxfr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
tgbtwnxfr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
tgbtwnxfr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
|
tgbtwnxfr.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 11 |
|
tgbtwnxfr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 12 |
|
tgbtwnxfr.2 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 13 |
1 2 4 5 6 7 8 9 10 11
|
trgcgrg |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐷 𝐸 𝐹 ”〉 ↔ ( ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ∧ ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ∧ ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) ) ) |
| 14 |
12 13
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ∧ ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ∧ ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) ) |
| 15 |
14
|
simp3d |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |