| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgcgrxfr.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tgcgrxfr.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | tgcgrxfr.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | tgcgrxfr.r | ⊢  ∼   =  ( cgrG ‘ 𝐺 ) | 
						
							| 5 |  | tgcgrxfr.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | tgbtwnxfr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | tgbtwnxfr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 8 |  | tgbtwnxfr.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 9 |  | tgbtwnxfr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 10 |  | tgbtwnxfr.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 11 |  | tgbtwnxfr.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 12 |  | tgbtwnxfr.2 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∼  〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 13 |  | cgr3tr.j | ⊢ ( 𝜑  →  𝐽  ∈  𝑃 ) | 
						
							| 14 |  | cgr3tr.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑃 ) | 
						
							| 15 |  | cgr3tr.l | ⊢ ( 𝜑  →  𝐿  ∈  𝑃 ) | 
						
							| 16 |  | cgr3tr.1 | ⊢ ( 𝜑  →  〈“ 𝐷 𝐸 𝐹 ”〉  ∼  〈“ 𝐽 𝐾 𝐿 ”〉 ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3simp1 | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐸 ) ) | 
						
							| 18 | 1 2 3 4 5 9 10 11 13 14 15 16 | cgr3simp1 | ⊢ ( 𝜑  →  ( 𝐷  −  𝐸 )  =  ( 𝐽  −  𝐾 ) ) | 
						
							| 19 | 17 18 | eqtrd | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐽  −  𝐾 ) ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3simp2 | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( 𝐸  −  𝐹 ) ) | 
						
							| 21 | 1 2 3 4 5 9 10 11 13 14 15 16 | cgr3simp2 | ⊢ ( 𝜑  →  ( 𝐸  −  𝐹 )  =  ( 𝐾  −  𝐿 ) ) | 
						
							| 22 | 20 21 | eqtrd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( 𝐾  −  𝐿 ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3simp3 | ⊢ ( 𝜑  →  ( 𝐶  −  𝐴 )  =  ( 𝐹  −  𝐷 ) ) | 
						
							| 24 | 1 2 3 4 5 9 10 11 13 14 15 16 | cgr3simp3 | ⊢ ( 𝜑  →  ( 𝐹  −  𝐷 )  =  ( 𝐿  −  𝐽 ) ) | 
						
							| 25 | 23 24 | eqtrd | ⊢ ( 𝜑  →  ( 𝐶  −  𝐴 )  =  ( 𝐿  −  𝐽 ) ) | 
						
							| 26 | 1 2 4 5 6 7 8 13 14 15 19 22 25 | trgcgr | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∼  〈“ 𝐽 𝐾 𝐿 ”〉 ) |