| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgcgrxfr.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tgcgrxfr.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | tgcgrxfr.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | tgcgrxfr.r |  |-  .~ = ( cgrG ` G ) | 
						
							| 5 |  | tgcgrxfr.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | tgbtwnxfr.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | tgbtwnxfr.b |  |-  ( ph -> B e. P ) | 
						
							| 8 |  | tgbtwnxfr.c |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | tgbtwnxfr.d |  |-  ( ph -> D e. P ) | 
						
							| 10 |  | tgbtwnxfr.e |  |-  ( ph -> E e. P ) | 
						
							| 11 |  | tgbtwnxfr.f |  |-  ( ph -> F e. P ) | 
						
							| 12 |  | tgbtwnxfr.2 |  |-  ( ph -> <" A B C "> .~ <" D E F "> ) | 
						
							| 13 |  | cgr3tr.j |  |-  ( ph -> J e. P ) | 
						
							| 14 |  | cgr3tr.k |  |-  ( ph -> K e. P ) | 
						
							| 15 |  | cgr3tr.l |  |-  ( ph -> L e. P ) | 
						
							| 16 |  | cgr3tr.1 |  |-  ( ph -> <" D E F "> .~ <" J K L "> ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3simp1 |  |-  ( ph -> ( A .- B ) = ( D .- E ) ) | 
						
							| 18 | 1 2 3 4 5 9 10 11 13 14 15 16 | cgr3simp1 |  |-  ( ph -> ( D .- E ) = ( J .- K ) ) | 
						
							| 19 | 17 18 | eqtrd |  |-  ( ph -> ( A .- B ) = ( J .- K ) ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3simp2 |  |-  ( ph -> ( B .- C ) = ( E .- F ) ) | 
						
							| 21 | 1 2 3 4 5 9 10 11 13 14 15 16 | cgr3simp2 |  |-  ( ph -> ( E .- F ) = ( K .- L ) ) | 
						
							| 22 | 20 21 | eqtrd |  |-  ( ph -> ( B .- C ) = ( K .- L ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3simp3 |  |-  ( ph -> ( C .- A ) = ( F .- D ) ) | 
						
							| 24 | 1 2 3 4 5 9 10 11 13 14 15 16 | cgr3simp3 |  |-  ( ph -> ( F .- D ) = ( L .- J ) ) | 
						
							| 25 | 23 24 | eqtrd |  |-  ( ph -> ( C .- A ) = ( L .- J ) ) | 
						
							| 26 | 1 2 4 5 6 7 8 13 14 15 19 22 25 | trgcgr |  |-  ( ph -> <" A B C "> .~ <" J K L "> ) |