| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgcgrxfr.p |
|- P = ( Base ` G ) |
| 2 |
|
tgcgrxfr.m |
|- .- = ( dist ` G ) |
| 3 |
|
tgcgrxfr.i |
|- I = ( Itv ` G ) |
| 4 |
|
tgcgrxfr.r |
|- .~ = ( cgrG ` G ) |
| 5 |
|
tgcgrxfr.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
tgbtwnxfr.a |
|- ( ph -> A e. P ) |
| 7 |
|
tgbtwnxfr.b |
|- ( ph -> B e. P ) |
| 8 |
|
tgbtwnxfr.c |
|- ( ph -> C e. P ) |
| 9 |
|
tgbtwnxfr.d |
|- ( ph -> D e. P ) |
| 10 |
|
tgbtwnxfr.e |
|- ( ph -> E e. P ) |
| 11 |
|
tgbtwnxfr.f |
|- ( ph -> F e. P ) |
| 12 |
|
tgbtwnxfr.2 |
|- ( ph -> <" A B C "> .~ <" D E F "> ) |
| 13 |
|
tgbtwnxfr.1 |
|- ( ph -> B e. ( A I C ) ) |
| 14 |
5
|
ad2antrr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> G e. TarskiG ) |
| 15 |
|
simplr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> e e. P ) |
| 16 |
10
|
ad2antrr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> E e. P ) |
| 17 |
9
|
ad2antrr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> D e. P ) |
| 18 |
11
|
ad2antrr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> F e. P ) |
| 19 |
|
simprl |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> e e. ( D I F ) ) |
| 20 |
|
eqidd |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( D .- F ) = ( D .- F ) ) |
| 21 |
|
eqidd |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( e .- F ) = ( e .- F ) ) |
| 22 |
6
|
ad2antrr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> A e. P ) |
| 23 |
7
|
ad2antrr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> B e. P ) |
| 24 |
8
|
ad2antrr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> C e. P ) |
| 25 |
|
simprr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> <" A B C "> .~ <" D e F "> ) |
| 26 |
1 2 3 4 14 22 23 24 17 15 18 25
|
trgcgrcom |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> <" D e F "> .~ <" A B C "> ) |
| 27 |
12
|
ad2antrr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> <" A B C "> .~ <" D E F "> ) |
| 28 |
1 2 3 4 14 17 15 18 22 23 24 26 17 16 18 27
|
cgr3tr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> <" D e F "> .~ <" D E F "> ) |
| 29 |
1 2 3 4 14 17 15 18 17 16 18 28
|
trgcgrcom |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> <" D E F "> .~ <" D e F "> ) |
| 30 |
1 2 3 4 14 17 16 18 17 15 18 29
|
cgr3simp1 |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( D .- E ) = ( D .- e ) ) |
| 31 |
1 2 3 4 14 17 16 18 17 15 18 29
|
cgr3simp2 |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( E .- F ) = ( e .- F ) ) |
| 32 |
1 2 3 14 16 18 15 18 31
|
tgcgrcomlr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( F .- E ) = ( F .- e ) ) |
| 33 |
1 2 3 14 17 15 18 16 17 15 18 15 19 19 20 21 30 32
|
tgifscgr |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( e .- E ) = ( e .- e ) ) |
| 34 |
1 2 3 14 15 16 15 33
|
axtgcgrid |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> e = E ) |
| 35 |
34 19
|
eqeltrrd |
|- ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> E e. ( D I F ) ) |
| 36 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cgr3simp3 |
|- ( ph -> ( C .- A ) = ( F .- D ) ) |
| 37 |
1 2 3 5 8 6 11 9 36
|
tgcgrcomlr |
|- ( ph -> ( A .- C ) = ( D .- F ) ) |
| 38 |
1 2 3 4 5 6 7 8 9 11 13 37
|
tgcgrxfr |
|- ( ph -> E. e e. P ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) |
| 39 |
35 38
|
r19.29a |
|- ( ph -> E e. ( D I F ) ) |