| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgcgrxfr.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tgcgrxfr.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | tgcgrxfr.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | tgcgrxfr.r |  |-  .~ = ( cgrG ` G ) | 
						
							| 5 |  | tgcgrxfr.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | tgbtwnxfr.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | tgbtwnxfr.b |  |-  ( ph -> B e. P ) | 
						
							| 8 |  | tgbtwnxfr.c |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | tgbtwnxfr.d |  |-  ( ph -> D e. P ) | 
						
							| 10 |  | tgbtwnxfr.e |  |-  ( ph -> E e. P ) | 
						
							| 11 |  | tgbtwnxfr.f |  |-  ( ph -> F e. P ) | 
						
							| 12 |  | tgbtwnxfr.2 |  |-  ( ph -> <" A B C "> .~ <" D E F "> ) | 
						
							| 13 |  | tgbtwnxfr.1 |  |-  ( ph -> B e. ( A I C ) ) | 
						
							| 14 | 5 | ad2antrr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> G e. TarskiG ) | 
						
							| 15 |  | simplr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> e e. P ) | 
						
							| 16 | 10 | ad2antrr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> E e. P ) | 
						
							| 17 | 9 | ad2antrr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> D e. P ) | 
						
							| 18 | 11 | ad2antrr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> F e. P ) | 
						
							| 19 |  | simprl |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> e e. ( D I F ) ) | 
						
							| 20 |  | eqidd |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( D .- F ) = ( D .- F ) ) | 
						
							| 21 |  | eqidd |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( e .- F ) = ( e .- F ) ) | 
						
							| 22 | 6 | ad2antrr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> A e. P ) | 
						
							| 23 | 7 | ad2antrr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> B e. P ) | 
						
							| 24 | 8 | ad2antrr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> C e. P ) | 
						
							| 25 |  | simprr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> <" A B C "> .~ <" D e F "> ) | 
						
							| 26 | 1 2 3 4 14 22 23 24 17 15 18 25 | trgcgrcom |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> <" D e F "> .~ <" A B C "> ) | 
						
							| 27 | 12 | ad2antrr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> <" A B C "> .~ <" D E F "> ) | 
						
							| 28 | 1 2 3 4 14 17 15 18 22 23 24 26 17 16 18 27 | cgr3tr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> <" D e F "> .~ <" D E F "> ) | 
						
							| 29 | 1 2 3 4 14 17 15 18 17 16 18 28 | trgcgrcom |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> <" D E F "> .~ <" D e F "> ) | 
						
							| 30 | 1 2 3 4 14 17 16 18 17 15 18 29 | cgr3simp1 |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( D .- E ) = ( D .- e ) ) | 
						
							| 31 | 1 2 3 4 14 17 16 18 17 15 18 29 | cgr3simp2 |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( E .- F ) = ( e .- F ) ) | 
						
							| 32 | 1 2 3 14 16 18 15 18 31 | tgcgrcomlr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( F .- E ) = ( F .- e ) ) | 
						
							| 33 | 1 2 3 14 17 15 18 16 17 15 18 15 19 19 20 21 30 32 | tgifscgr |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> ( e .- E ) = ( e .- e ) ) | 
						
							| 34 | 1 2 3 14 15 16 15 33 | axtgcgrid |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> e = E ) | 
						
							| 35 | 34 19 | eqeltrrd |  |-  ( ( ( ph /\ e e. P ) /\ ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) -> E e. ( D I F ) ) | 
						
							| 36 | 1 2 3 4 5 6 7 8 9 10 11 12 | cgr3simp3 |  |-  ( ph -> ( C .- A ) = ( F .- D ) ) | 
						
							| 37 | 1 2 3 5 8 6 11 9 36 | tgcgrcomlr |  |-  ( ph -> ( A .- C ) = ( D .- F ) ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 11 13 37 | tgcgrxfr |  |-  ( ph -> E. e e. P ( e e. ( D I F ) /\ <" A B C "> .~ <" D e F "> ) ) | 
						
							| 39 | 35 38 | r19.29a |  |-  ( ph -> E e. ( D I F ) ) |