Metamath Proof Explorer


Theorem tgbtwnxfr

Description: A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of Schwabhauser p. 36. (Contributed by Thierry Arnoux, 27-Apr-2019)

Ref Expression
Hypotheses tgcgrxfr.p 𝑃 = ( Base ‘ 𝐺 )
tgcgrxfr.m = ( dist ‘ 𝐺 )
tgcgrxfr.i 𝐼 = ( Itv ‘ 𝐺 )
tgcgrxfr.r = ( cgrG ‘ 𝐺 )
tgcgrxfr.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwnxfr.a ( 𝜑𝐴𝑃 )
tgbtwnxfr.b ( 𝜑𝐵𝑃 )
tgbtwnxfr.c ( 𝜑𝐶𝑃 )
tgbtwnxfr.d ( 𝜑𝐷𝑃 )
tgbtwnxfr.e ( 𝜑𝐸𝑃 )
tgbtwnxfr.f ( 𝜑𝐹𝑃 )
tgbtwnxfr.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
tgbtwnxfr.1 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
Assertion tgbtwnxfr ( 𝜑𝐸 ∈ ( 𝐷 𝐼 𝐹 ) )

Proof

Step Hyp Ref Expression
1 tgcgrxfr.p 𝑃 = ( Base ‘ 𝐺 )
2 tgcgrxfr.m = ( dist ‘ 𝐺 )
3 tgcgrxfr.i 𝐼 = ( Itv ‘ 𝐺 )
4 tgcgrxfr.r = ( cgrG ‘ 𝐺 )
5 tgcgrxfr.g ( 𝜑𝐺 ∈ TarskiG )
6 tgbtwnxfr.a ( 𝜑𝐴𝑃 )
7 tgbtwnxfr.b ( 𝜑𝐵𝑃 )
8 tgbtwnxfr.c ( 𝜑𝐶𝑃 )
9 tgbtwnxfr.d ( 𝜑𝐷𝑃 )
10 tgbtwnxfr.e ( 𝜑𝐸𝑃 )
11 tgbtwnxfr.f ( 𝜑𝐹𝑃 )
12 tgbtwnxfr.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
13 tgbtwnxfr.1 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
14 5 ad2antrr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝐺 ∈ TarskiG )
15 simplr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝑒𝑃 )
16 10 ad2antrr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝐸𝑃 )
17 9 ad2antrr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝐷𝑃 )
18 11 ad2antrr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝐹𝑃 )
19 simprl ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) )
20 eqidd ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ( 𝐷 𝐹 ) = ( 𝐷 𝐹 ) )
21 eqidd ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ( 𝑒 𝐹 ) = ( 𝑒 𝐹 ) )
22 6 ad2antrr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝐴𝑃 )
23 7 ad2antrr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝐵𝑃 )
24 8 ad2antrr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝐶𝑃 )
25 simprr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ )
26 1 2 3 4 14 22 23 24 17 15 18 25 trgcgrcom ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ⟨“ 𝐷 𝑒 𝐹 ”⟩ ⟨“ 𝐴 𝐵 𝐶 ”⟩ )
27 12 ad2antrr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
28 1 2 3 4 14 17 15 18 22 23 24 26 17 16 18 27 cgr3tr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ⟨“ 𝐷 𝑒 𝐹 ”⟩ ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
29 1 2 3 4 14 17 15 18 17 16 18 28 trgcgrcom ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ⟨“ 𝐷 𝐸 𝐹 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ )
30 1 2 3 4 14 17 16 18 17 15 18 29 cgr3simp1 ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ( 𝐷 𝐸 ) = ( 𝐷 𝑒 ) )
31 1 2 3 4 14 17 16 18 17 15 18 29 cgr3simp2 ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ( 𝐸 𝐹 ) = ( 𝑒 𝐹 ) )
32 1 2 3 14 16 18 15 18 31 tgcgrcomlr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ( 𝐹 𝐸 ) = ( 𝐹 𝑒 ) )
33 1 2 3 14 17 15 18 16 17 15 18 15 19 19 20 21 30 32 tgifscgr ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → ( 𝑒 𝐸 ) = ( 𝑒 𝑒 ) )
34 1 2 3 14 15 16 15 33 axtgcgrid ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝑒 = 𝐸 )
35 34 19 eqeltrrd ( ( ( 𝜑𝑒𝑃 ) ∧ ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) ) → 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) )
36 1 2 3 4 5 6 7 8 9 10 11 12 cgr3simp3 ( 𝜑 → ( 𝐶 𝐴 ) = ( 𝐹 𝐷 ) )
37 1 2 3 5 8 6 11 9 36 tgcgrcomlr ( 𝜑 → ( 𝐴 𝐶 ) = ( 𝐷 𝐹 ) )
38 1 2 3 4 5 6 7 8 9 11 13 37 tgcgrxfr ( 𝜑 → ∃ 𝑒𝑃 ( 𝑒 ∈ ( 𝐷 𝐼 𝐹 ) ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝑒 𝐹 ”⟩ ) )
39 35 38 r19.29a ( 𝜑𝐸 ∈ ( 𝐷 𝐼 𝐹 ) )