| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgcgrxfr.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgcgrxfr.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tgcgrxfr.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tgcgrxfr.r |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
| 5 |
|
tgcgrxfr.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
tgcgr4.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
tgcgr4.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
tgcgr4.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
tgcgr4.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
|
tgcgr4.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑃 ) |
| 11 |
|
tgcgr4.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 12 |
|
tgcgr4.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 13 |
|
tgcgr4.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
| 14 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 4 ) ⊆ ℕ0 |
| 15 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 16 |
14 15
|
sstri |
⊢ ( 0 ..^ 4 ) ⊆ ℝ |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 4 ) ⊆ ℝ ) |
| 18 |
6 7 8 9
|
s4cld |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∈ Word 𝑃 ) |
| 19 |
|
wrdf |
⊢ ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∈ Word 𝑃 → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) ⟶ 𝑃 ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) ⟶ 𝑃 ) |
| 21 |
|
s4len |
⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 4 |
| 22 |
21
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) = ( 0 ..^ 4 ) |
| 23 |
22
|
feq2i |
⊢ ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) ⟶ 𝑃 ↔ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ 4 ) ⟶ 𝑃 ) |
| 24 |
20 23
|
sylib |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ 4 ) ⟶ 𝑃 ) |
| 25 |
10 11 12 13
|
s4cld |
⊢ ( 𝜑 → 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ∈ Word 𝑃 ) |
| 26 |
|
wrdf |
⊢ ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ∈ Word 𝑃 → 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ) ) ⟶ 𝑃 ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ) ) ⟶ 𝑃 ) |
| 28 |
|
s4len |
⊢ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ) = 4 |
| 29 |
28
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ) ) = ( 0 ..^ 4 ) |
| 30 |
29
|
feq2i |
⊢ ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ) ) ⟶ 𝑃 ↔ 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 : ( 0 ..^ 4 ) ⟶ 𝑃 ) |
| 31 |
27 30
|
sylib |
⊢ ( 𝜑 → 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 : ( 0 ..^ 4 ) ⟶ 𝑃 ) |
| 32 |
1 2 4 5 17 24 31
|
iscgrglt |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∼ 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ↔ ∀ 𝑖 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∀ 𝑗 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ) ) |
| 33 |
24
|
fdmd |
⊢ ( 𝜑 → dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 = ( 0 ..^ 4 ) ) |
| 34 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 35 |
34
|
oveq2i |
⊢ ( 0 ..^ ( 3 + 1 ) ) = ( 0 ..^ 4 ) |
| 36 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 37 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 38 |
36 37
|
eleqtri |
⊢ 3 ∈ ( ℤ≥ ‘ 0 ) |
| 39 |
|
fzosplitsn |
⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( 3 + 1 ) ) = ( ( 0 ..^ 3 ) ∪ { 3 } ) ) |
| 40 |
38 39
|
ax-mp |
⊢ ( 0 ..^ ( 3 + 1 ) ) = ( ( 0 ..^ 3 ) ∪ { 3 } ) |
| 41 |
35 40
|
eqtr3i |
⊢ ( 0 ..^ 4 ) = ( ( 0 ..^ 3 ) ∪ { 3 } ) |
| 42 |
33 41
|
eqtrdi |
⊢ ( 𝜑 → dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 = ( ( 0 ..^ 3 ) ∪ { 3 } ) ) |
| 43 |
42
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( ( 0 ..^ 3 ) ∪ { 3 } ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ) ) |
| 44 |
|
breq2 |
⊢ ( 𝑗 = 3 → ( 𝑖 < 𝑗 ↔ 𝑖 < 3 ) ) |
| 45 |
|
fveq2 |
⊢ ( 𝑗 = 3 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑗 = 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑗 = 3 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) = ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) |
| 48 |
47
|
oveq2d |
⊢ ( 𝑗 = 3 → ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) |
| 49 |
46 48
|
eqeq12d |
⊢ ( 𝑗 = 3 → ( ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ↔ ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) |
| 50 |
44 49
|
imbi12d |
⊢ ( 𝑗 = 3 → ( ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) |
| 51 |
50
|
ralunsn |
⊢ ( 3 ∈ ℕ0 → ( ∀ 𝑗 ∈ ( ( 0 ..^ 3 ) ∪ { 3 } ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) ) |
| 52 |
36 51
|
ax-mp |
⊢ ( ∀ 𝑗 ∈ ( ( 0 ..^ 3 ) ∪ { 3 } ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) |
| 53 |
43 52
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) ) |
| 54 |
53
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∀ 𝑗 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ∀ 𝑖 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) ) |
| 55 |
42
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ↔ ∀ 𝑖 ∈ ( ( 0 ..^ 3 ) ∪ { 3 } ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) ) |
| 56 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 3 ) ⊆ ℕ0 |
| 57 |
56 15
|
sstri |
⊢ ( 0 ..^ 3 ) ⊆ ℝ |
| 58 |
|
simpr |
⊢ ( ( 𝑖 = 3 ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) → 𝑗 ∈ ( 0 ..^ 3 ) ) |
| 59 |
57 58
|
sselid |
⊢ ( ( 𝑖 = 3 ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) → 𝑗 ∈ ℝ ) |
| 60 |
|
simpl |
⊢ ( ( 𝑖 = 3 ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) → 𝑖 = 3 ) |
| 61 |
|
3re |
⊢ 3 ∈ ℝ |
| 62 |
60 61
|
eqeltrdi |
⊢ ( ( 𝑖 = 3 ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) → 𝑖 ∈ ℝ ) |
| 63 |
|
elfzolt2 |
⊢ ( 𝑗 ∈ ( 0 ..^ 3 ) → 𝑗 < 3 ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝑖 = 3 ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) → 𝑗 < 3 ) |
| 65 |
64 60
|
breqtrrd |
⊢ ( ( 𝑖 = 3 ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) → 𝑗 < 𝑖 ) |
| 66 |
59 62 65
|
ltnsymd |
⊢ ( ( 𝑖 = 3 ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) → ¬ 𝑖 < 𝑗 ) |
| 67 |
66
|
pm2.21d |
⊢ ( ( 𝑖 = 3 ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) → ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ) |
| 68 |
|
tbtru |
⊢ ( ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ( ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ⊤ ) ) |
| 69 |
67 68
|
sylib |
⊢ ( ( 𝑖 = 3 ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) → ( ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ⊤ ) ) |
| 70 |
69
|
ralbidva |
⊢ ( 𝑖 = 3 → ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 3 ) ⊤ ) ) |
| 71 |
|
3nn |
⊢ 3 ∈ ℕ |
| 72 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ ) |
| 73 |
71 72
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 3 ) |
| 74 |
73
|
ne0ii |
⊢ ( 0 ..^ 3 ) ≠ ∅ |
| 75 |
|
r19.3rzv |
⊢ ( ( 0 ..^ 3 ) ≠ ∅ → ( ⊤ ↔ ∀ 𝑗 ∈ ( 0 ..^ 3 ) ⊤ ) ) |
| 76 |
74 75
|
ax-mp |
⊢ ( ⊤ ↔ ∀ 𝑗 ∈ ( 0 ..^ 3 ) ⊤ ) |
| 77 |
70 76
|
bitr4di |
⊢ ( 𝑖 = 3 → ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ⊤ ) ) |
| 78 |
|
breq1 |
⊢ ( 𝑖 = 3 → ( 𝑖 < 3 ↔ 3 < 3 ) ) |
| 79 |
61
|
ltnri |
⊢ ¬ 3 < 3 |
| 80 |
79
|
bifal |
⊢ ( 3 < 3 ↔ ⊥ ) |
| 81 |
78 80
|
bitrdi |
⊢ ( 𝑖 = 3 → ( 𝑖 < 3 ↔ ⊥ ) ) |
| 82 |
81
|
imbi1d |
⊢ ( 𝑖 = 3 → ( ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ↔ ( ⊥ → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) |
| 83 |
|
falim |
⊢ ( ⊥ → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) |
| 84 |
83
|
bitru |
⊢ ( ( ⊥ → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ↔ ⊤ ) |
| 85 |
82 84
|
bitrdi |
⊢ ( 𝑖 = 3 → ( ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ↔ ⊤ ) ) |
| 86 |
77 85
|
anbi12d |
⊢ ( 𝑖 = 3 → ( ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ↔ ( ⊤ ∧ ⊤ ) ) ) |
| 87 |
|
anidm |
⊢ ( ( ⊤ ∧ ⊤ ) ↔ ⊤ ) |
| 88 |
86 87
|
bitrdi |
⊢ ( 𝑖 = 3 → ( ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ↔ ⊤ ) ) |
| 89 |
88
|
ralunsn |
⊢ ( 3 ∈ ℕ0 → ( ∀ 𝑖 ∈ ( ( 0 ..^ 3 ) ∪ { 3 } ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ∧ ⊤ ) ) ) |
| 90 |
36 89
|
ax-mp |
⊢ ( ∀ 𝑖 ∈ ( ( 0 ..^ 3 ) ∪ { 3 } ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ∧ ⊤ ) ) |
| 91 |
|
ancom |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ∧ ⊤ ) ↔ ( ⊤ ∧ ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) ) |
| 92 |
|
truan |
⊢ ( ( ⊤ ∧ ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) |
| 93 |
90 91 92
|
3bitri |
⊢ ( ∀ 𝑖 ∈ ( ( 0 ..^ 3 ) ∪ { 3 } ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) |
| 94 |
55 93
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) ) |
| 95 |
54 94
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∀ 𝑗 ∈ dom 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) ) |
| 96 |
|
r19.26 |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) |
| 97 |
6 7 8
|
s3cld |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word 𝑃 ) |
| 98 |
|
wrdf |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word 𝑃 → 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ⟶ 𝑃 ) |
| 99 |
97 98
|
syl |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ⟶ 𝑃 ) |
| 100 |
|
s3len |
⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) = 3 |
| 101 |
100
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) = ( 0 ..^ 3 ) |
| 102 |
101
|
feq2i |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ⟶ 𝑃 ↔ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ 3 ) ⟶ 𝑃 ) |
| 103 |
99 102
|
sylib |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ 3 ) ⟶ 𝑃 ) |
| 104 |
103
|
fdmd |
⊢ ( 𝜑 → dom 〈“ 𝐴 𝐵 𝐶 ”〉 = ( 0 ..^ 3 ) ) |
| 105 |
104
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ dom 〈“ 𝐴 𝐵 𝐶 ”〉 ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) ) ) ) |
| 106 |
104 105
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ dom 〈“ 𝐴 𝐵 𝐶 ”〉 ∀ 𝑗 ∈ dom 〈“ 𝐴 𝐵 𝐶 ”〉 ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 3 ) ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) ) ) ) |
| 107 |
57
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 3 ) ⊆ ℝ ) |
| 108 |
10 11 12
|
s3cld |
⊢ ( 𝜑 → 〈“ 𝑊 𝑋 𝑌 ”〉 ∈ Word 𝑃 ) |
| 109 |
|
wrdf |
⊢ ( 〈“ 𝑊 𝑋 𝑌 ”〉 ∈ Word 𝑃 → 〈“ 𝑊 𝑋 𝑌 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 ”〉 ) ) ⟶ 𝑃 ) |
| 110 |
108 109
|
syl |
⊢ ( 𝜑 → 〈“ 𝑊 𝑋 𝑌 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 ”〉 ) ) ⟶ 𝑃 ) |
| 111 |
|
s3len |
⊢ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 ”〉 ) = 3 |
| 112 |
111
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 ”〉 ) ) = ( 0 ..^ 3 ) |
| 113 |
112
|
feq2i |
⊢ ( 〈“ 𝑊 𝑋 𝑌 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 ”〉 ) ) ⟶ 𝑃 ↔ 〈“ 𝑊 𝑋 𝑌 ”〉 : ( 0 ..^ 3 ) ⟶ 𝑃 ) |
| 114 |
110 113
|
sylib |
⊢ ( 𝜑 → 〈“ 𝑊 𝑋 𝑌 ”〉 : ( 0 ..^ 3 ) ⟶ 𝑃 ) |
| 115 |
1 2 4 5 107 103 114
|
iscgrglt |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝑊 𝑋 𝑌 ”〉 ↔ ∀ 𝑖 ∈ dom 〈“ 𝐴 𝐵 𝐶 ”〉 ∀ 𝑗 ∈ dom 〈“ 𝐴 𝐵 𝐶 ”〉 ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) ) ) ) |
| 116 |
|
df-s4 |
⊢ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ++ 〈“ 𝐷 ”〉 ) |
| 117 |
116
|
fveq1i |
⊢ ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) = ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ++ 〈“ 𝐷 ”〉 ) ‘ 𝑖 ) |
| 118 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 119 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 120 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝐶 ∈ 𝑃 ) |
| 121 |
118 119 120
|
s3cld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word 𝑃 ) |
| 122 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝐷 ∈ 𝑃 ) |
| 123 |
122
|
s1cld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 〈“ 𝐷 ”〉 ∈ Word 𝑃 ) |
| 124 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝑖 ∈ ( 0 ..^ 3 ) ) |
| 125 |
124 101
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ) |
| 126 |
|
ccatval1 |
⊢ ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word 𝑃 ∧ 〈“ 𝐷 ”〉 ∈ Word 𝑃 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ) → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ++ 〈“ 𝐷 ”〉 ) ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ) |
| 127 |
121 123 125 126
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ++ 〈“ 𝐷 ”〉 ) ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ) |
| 128 |
117 127
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ) |
| 129 |
116
|
fveq1i |
⊢ ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) = ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ++ 〈“ 𝐷 ”〉 ) ‘ 𝑗 ) |
| 130 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝑗 ∈ ( 0 ..^ 3 ) ) |
| 131 |
130 101
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ) |
| 132 |
|
ccatval1 |
⊢ ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word 𝑃 ∧ 〈“ 𝐷 ”〉 ∈ Word 𝑃 ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ) → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ++ 〈“ 𝐷 ”〉 ) ‘ 𝑗 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) |
| 133 |
121 123 131 132
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ++ 〈“ 𝐷 ”〉 ) ‘ 𝑗 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) |
| 134 |
129 133
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) |
| 135 |
128 134
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) ) |
| 136 |
|
df-s4 |
⊢ 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 = ( 〈“ 𝑊 𝑋 𝑌 ”〉 ++ 〈“ 𝑍 ”〉 ) |
| 137 |
136
|
fveq1i |
⊢ ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ++ 〈“ 𝑍 ”〉 ) ‘ 𝑖 ) |
| 138 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝑊 ∈ 𝑃 ) |
| 139 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝑋 ∈ 𝑃 ) |
| 140 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝑌 ∈ 𝑃 ) |
| 141 |
138 139 140
|
s3cld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 〈“ 𝑊 𝑋 𝑌 ”〉 ∈ Word 𝑃 ) |
| 142 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝑍 ∈ 𝑃 ) |
| 143 |
142
|
s1cld |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 〈“ 𝑍 ”〉 ∈ Word 𝑃 ) |
| 144 |
124 112
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 ”〉 ) ) ) |
| 145 |
|
ccatval1 |
⊢ ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ∈ Word 𝑃 ∧ 〈“ 𝑍 ”〉 ∈ Word 𝑃 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 ”〉 ) ) ) → ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ++ 〈“ 𝑍 ”〉 ) ‘ 𝑖 ) = ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) ) |
| 146 |
141 143 144 145
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ++ 〈“ 𝑍 ”〉 ) ‘ 𝑖 ) = ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) ) |
| 147 |
137 146
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) = ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) ) |
| 148 |
136
|
fveq1i |
⊢ ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ++ 〈“ 𝑍 ”〉 ) ‘ 𝑗 ) |
| 149 |
130 112
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 ”〉 ) ) ) |
| 150 |
|
ccatval1 |
⊢ ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ∈ Word 𝑃 ∧ 〈“ 𝑍 ”〉 ∈ Word 𝑃 ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝑊 𝑋 𝑌 ”〉 ) ) ) → ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ++ 〈“ 𝑍 ”〉 ) ‘ 𝑗 ) = ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) |
| 151 |
141 143 149 150
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ++ 〈“ 𝑍 ”〉 ) ‘ 𝑗 ) = ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) |
| 152 |
148 151
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) = ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) |
| 153 |
147 152
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) ) |
| 154 |
135 153
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ↔ ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) ) ) |
| 155 |
154
|
imbi2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 3 ) ∧ 𝑗 ∈ ( 0 ..^ 3 ) ) ) → ( ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) ) ) ) |
| 156 |
155
|
2ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 3 ) ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 ”〉 ‘ 𝑗 ) ) ) ) ) |
| 157 |
106 115 156
|
3bitr4rd |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ↔ 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝑊 𝑋 𝑌 ”〉 ) ) |
| 158 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 159 |
158
|
raleqi |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ↔ ∀ 𝑖 ∈ { 0 , 1 , 2 } ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) |
| 160 |
|
3pos |
⊢ 0 < 3 |
| 161 |
|
breq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 < 3 ↔ 0 < 3 ) ) |
| 162 |
160 161
|
mpbiri |
⊢ ( 𝑖 = 0 → 𝑖 < 3 ) |
| 163 |
162
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → 𝑖 < 3 ) |
| 164 |
|
biimt |
⊢ ( 𝑖 < 3 → ( ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ↔ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) |
| 165 |
163 164
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ↔ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) |
| 166 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 0 ) ) |
| 167 |
|
s4fv0 |
⊢ ( 𝐴 ∈ 𝑃 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 0 ) = 𝐴 ) |
| 168 |
6 167
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 0 ) = 𝐴 ) |
| 169 |
166 168
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) = 𝐴 ) |
| 170 |
|
s4fv3 |
⊢ ( 𝐷 ∈ 𝑃 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) = 𝐷 ) |
| 171 |
9 170
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) = 𝐷 ) |
| 172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) = 𝐷 ) |
| 173 |
169 172
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( 𝐴 − 𝐷 ) ) |
| 174 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) = ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 0 ) ) |
| 175 |
|
s4fv0 |
⊢ ( 𝑊 ∈ 𝑃 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 0 ) = 𝑊 ) |
| 176 |
10 175
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 0 ) = 𝑊 ) |
| 177 |
174 176
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) = 𝑊 ) |
| 178 |
|
s4fv3 |
⊢ ( 𝑍 ∈ 𝑃 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) = 𝑍 ) |
| 179 |
13 178
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) = 𝑍 ) |
| 180 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) = 𝑍 ) |
| 181 |
177 180
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) = ( 𝑊 − 𝑍 ) ) |
| 182 |
173 181
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ↔ ( 𝐴 − 𝐷 ) = ( 𝑊 − 𝑍 ) ) ) |
| 183 |
165 182
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ↔ ( 𝐴 − 𝐷 ) = ( 𝑊 − 𝑍 ) ) ) |
| 184 |
|
1lt3 |
⊢ 1 < 3 |
| 185 |
|
breq1 |
⊢ ( 𝑖 = 1 → ( 𝑖 < 3 ↔ 1 < 3 ) ) |
| 186 |
184 185
|
mpbiri |
⊢ ( 𝑖 = 1 → 𝑖 < 3 ) |
| 187 |
186
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → 𝑖 < 3 ) |
| 188 |
187 164
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ( ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ↔ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) |
| 189 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 1 ) ) |
| 190 |
|
s4fv1 |
⊢ ( 𝐵 ∈ 𝑃 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 1 ) = 𝐵 ) |
| 191 |
7 190
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 1 ) = 𝐵 ) |
| 192 |
189 191
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) = 𝐵 ) |
| 193 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) = 𝐷 ) |
| 194 |
192 193
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( 𝐵 − 𝐷 ) ) |
| 195 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) = ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 1 ) ) |
| 196 |
|
s4fv1 |
⊢ ( 𝑋 ∈ 𝑃 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 1 ) = 𝑋 ) |
| 197 |
11 196
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 1 ) = 𝑋 ) |
| 198 |
195 197
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) = 𝑋 ) |
| 199 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) = 𝑍 ) |
| 200 |
198 199
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) = ( 𝑋 − 𝑍 ) ) |
| 201 |
194 200
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ( ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ↔ ( 𝐵 − 𝐷 ) = ( 𝑋 − 𝑍 ) ) ) |
| 202 |
188 201
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑖 = 1 ) → ( ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ↔ ( 𝐵 − 𝐷 ) = ( 𝑋 − 𝑍 ) ) ) |
| 203 |
|
2lt3 |
⊢ 2 < 3 |
| 204 |
|
breq1 |
⊢ ( 𝑖 = 2 → ( 𝑖 < 3 ↔ 2 < 3 ) ) |
| 205 |
203 204
|
mpbiri |
⊢ ( 𝑖 = 2 → 𝑖 < 3 ) |
| 206 |
205
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → 𝑖 < 3 ) |
| 207 |
206 164
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ( ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ↔ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ) |
| 208 |
|
fveq2 |
⊢ ( 𝑖 = 2 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 2 ) ) |
| 209 |
|
s4fv2 |
⊢ ( 𝐶 ∈ 𝑃 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 2 ) = 𝐶 ) |
| 210 |
8 209
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 2 ) = 𝐶 ) |
| 211 |
208 210
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) = 𝐶 ) |
| 212 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) = 𝐷 ) |
| 213 |
211 212
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( 𝐶 − 𝐷 ) ) |
| 214 |
|
fveq2 |
⊢ ( 𝑖 = 2 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) = ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 2 ) ) |
| 215 |
|
s4fv2 |
⊢ ( 𝑌 ∈ 𝑃 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 2 ) = 𝑌 ) |
| 216 |
12 215
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 2 ) = 𝑌 ) |
| 217 |
214 216
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) = 𝑌 ) |
| 218 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) = 𝑍 ) |
| 219 |
217 218
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) = ( 𝑌 − 𝑍 ) ) |
| 220 |
213 219
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ( ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ↔ ( 𝐶 − 𝐷 ) = ( 𝑌 − 𝑍 ) ) ) |
| 221 |
207 220
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑖 = 2 ) → ( ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ↔ ( 𝐶 − 𝐷 ) = ( 𝑌 − 𝑍 ) ) ) |
| 222 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 223 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 224 |
|
2re |
⊢ 2 ∈ ℝ |
| 225 |
224
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 226 |
183 202 221 222 223 225
|
raltpd |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ { 0 , 1 , 2 } ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ↔ ( ( 𝐴 − 𝐷 ) = ( 𝑊 − 𝑍 ) ∧ ( 𝐵 − 𝐷 ) = ( 𝑋 − 𝑍 ) ∧ ( 𝐶 − 𝐷 ) = ( 𝑌 − 𝑍 ) ) ) ) |
| 227 |
159 226
|
bitrid |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ↔ ( ( 𝐴 − 𝐷 ) = ( 𝑊 − 𝑍 ) ∧ ( 𝐵 − 𝐷 ) = ( 𝑋 − 𝑍 ) ∧ ( 𝐶 − 𝐷 ) = ( 𝑌 − 𝑍 ) ) ) ) |
| 228 |
157 227
|
anbi12d |
⊢ ( 𝜑 → ( ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝑊 𝑋 𝑌 ”〉 ∧ ( ( 𝐴 − 𝐷 ) = ( 𝑊 − 𝑍 ) ∧ ( 𝐵 − 𝐷 ) = ( 𝑋 − 𝑍 ) ∧ ( 𝐶 − 𝐷 ) = ( 𝑌 − 𝑍 ) ) ) ) ) |
| 229 |
96 228
|
bitrid |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ..^ 3 ) ( ∀ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑖 < 𝑗 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑗 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑗 ) ) ) ∧ ( 𝑖 < 3 → ( ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 𝑖 ) − ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) = ( ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 𝑖 ) − ( 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ‘ 3 ) ) ) ) ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝑊 𝑋 𝑌 ”〉 ∧ ( ( 𝐴 − 𝐷 ) = ( 𝑊 − 𝑍 ) ∧ ( 𝐵 − 𝐷 ) = ( 𝑋 − 𝑍 ) ∧ ( 𝐶 − 𝐷 ) = ( 𝑌 − 𝑍 ) ) ) ) ) |
| 230 |
32 95 229
|
3bitrd |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∼ 〈“ 𝑊 𝑋 𝑌 𝑍 ”〉 ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝑊 𝑋 𝑌 ”〉 ∧ ( ( 𝐴 − 𝐷 ) = ( 𝑊 − 𝑍 ) ∧ ( 𝐵 − 𝐷 ) = ( 𝑋 − 𝑍 ) ∧ ( 𝐶 − 𝐷 ) = ( 𝑌 − 𝑍 ) ) ) ) ) |