Step |
Hyp |
Ref |
Expression |
1 |
|
ralprd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
ralprd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
raltpd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → ( 𝜓 ↔ 𝜏 ) ) |
4 |
|
ralprd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
ralprd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
6 |
|
raltpd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
7 |
|
an3andi |
⊢ ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜑 ∧ 𝜏 ) ) ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜑 ∧ 𝜏 ) ) ) ) |
9 |
1
|
expcom |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ) |
10 |
9
|
pm5.32d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜒 ) ) ) |
11 |
2
|
expcom |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) ) |
12 |
11
|
pm5.32d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜃 ) ) ) |
13 |
3
|
expcom |
⊢ ( 𝑥 = 𝐶 → ( 𝜑 → ( 𝜓 ↔ 𝜏 ) ) ) |
14 |
13
|
pm5.32d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜏 ) ) ) |
15 |
10 12 14
|
raltpg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜑 ∧ 𝜏 ) ) ) ) |
16 |
4 5 6 15
|
syl3anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜑 ∧ 𝜏 ) ) ) ) |
17 |
4
|
tpnzd |
⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ) |
18 |
|
r19.28zv |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ) ) ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ) ) ) |
20 |
8 16 19
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ) ) ) |
21 |
20
|
bianabs |
⊢ ( 𝜑 → ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ) ) |
22 |
21
|
bicomd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ↔ ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) ) |
23 |
22
|
bianabs |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |