| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trgcgrg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
trgcgrg.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
trgcgrg.r |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
| 4 |
|
trgcgrg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
iscgrglt.d |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
| 6 |
|
iscgrglt.a |
⊢ ( 𝜑 → 𝐴 : 𝐷 ⟶ 𝑃 ) |
| 7 |
|
iscgrglt.b |
⊢ ( 𝜑 → 𝐵 : 𝐷 ⟶ 𝑃 ) |
| 8 |
1 2 3 4 5 6 7
|
iscgrgd |
⊢ ( 𝜑 → ( 𝐴 ∼ 𝐵 ↔ ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 9 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴 ) ) ∧ ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ∧ 𝑖 < 𝑗 ) → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) |
| 10 |
9
|
3exp |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴 ) ) → ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) → ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 11 |
10
|
ralimdvva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) → ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 12 |
|
breq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 < 𝑙 ↔ 𝑖 < 𝑙 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑖 ) ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑙 ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑖 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑙 ) ) ) |
| 17 |
14 16
|
eqeq12d |
⊢ ( 𝑘 = 𝑖 → ( ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ↔ ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) |
| 18 |
12 17
|
imbi12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ↔ ( 𝑖 < 𝑙 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ) |
| 19 |
|
breq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝑖 < 𝑙 ↔ 𝑖 < 𝑗 ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐴 ‘ 𝑙 ) = ( 𝐴 ‘ 𝑗 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐵 ‘ 𝑙 ) = ( 𝐵 ‘ 𝑗 ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) |
| 24 |
21 23
|
eqeq12d |
⊢ ( 𝑙 = 𝑗 → ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑙 ) ) ↔ ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 25 |
19 24
|
imbi12d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝑖 < 𝑙 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑙 ) ) ) ↔ ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 26 |
18 25
|
cbvral2vw |
⊢ ( ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ↔ ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 27 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → 𝑖 ∈ dom 𝐴 ) |
| 28 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ dom 𝐴 ) |
| 29 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) |
| 30 |
27 28 29
|
jca31 |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → ( ( 𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴 ) ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ) |
| 31 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → 𝑖 < 𝑗 ) |
| 32 |
18 25
|
rspc2va |
⊢ ( ( ( 𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴 ) ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) → ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 33 |
30 31 32
|
sylc |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 < 𝑗 ) → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) |
| 34 |
|
eqid |
⊢ ( Itv ‘ 𝐺 ) = ( Itv ‘ 𝐺 ) |
| 35 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → 𝐺 ∈ TarskiG ) |
| 36 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝐴 : 𝐷 ⟶ 𝑃 ) |
| 37 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑖 ∈ dom 𝐴 ) |
| 38 |
36
|
fdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → dom 𝐴 = 𝐷 ) |
| 39 |
37 38
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑖 ∈ 𝐷 ) |
| 40 |
36 39
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝑃 ) |
| 41 |
40
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝑃 ) |
| 42 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝐵 : 𝐷 ⟶ 𝑃 ) |
| 43 |
42 39
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( 𝐵 ‘ 𝑖 ) ∈ 𝑃 ) |
| 44 |
43
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( 𝐵 ‘ 𝑖 ) ∈ 𝑃 ) |
| 45 |
1 2 34 35 41 44
|
tgcgrtriv |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) |
| 46 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → 𝑖 = 𝑗 ) |
| 47 |
46
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑗 ) ) |
| 48 |
47
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) ) |
| 49 |
46
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) |
| 50 |
49
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) |
| 51 |
45 48 50
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) |
| 52 |
51
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑖 = 𝑗 ) → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) |
| 53 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → 𝐺 ∈ TarskiG ) |
| 54 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑗 ∈ dom 𝐴 ) |
| 55 |
54 38
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑗 ∈ 𝐷 ) |
| 56 |
36 55
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( 𝐴 ‘ 𝑗 ) ∈ 𝑃 ) |
| 57 |
56
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐴 ‘ 𝑗 ) ∈ 𝑃 ) |
| 58 |
57
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐴 ‘ 𝑗 ) ∈ 𝑃 ) |
| 59 |
40
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝑃 ) |
| 60 |
59
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝑃 ) |
| 61 |
42 55
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( 𝐵 ‘ 𝑗 ) ∈ 𝑃 ) |
| 62 |
61
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐵 ‘ 𝑗 ) ∈ 𝑃 ) |
| 63 |
62
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐵 ‘ 𝑗 ) ∈ 𝑃 ) |
| 64 |
43
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐵 ‘ 𝑖 ) ∈ 𝑃 ) |
| 65 |
64
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( 𝐵 ‘ 𝑖 ) ∈ 𝑃 ) |
| 66 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → 𝑗 ∈ dom 𝐴 ) |
| 67 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → 𝑖 ∈ dom 𝐴 ) |
| 68 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) |
| 69 |
66 67 68
|
jca31 |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( ( 𝑗 ∈ dom 𝐴 ∧ 𝑖 ∈ dom 𝐴 ) ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ) |
| 70 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → 𝑗 < 𝑖 ) |
| 71 |
|
breq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 < 𝑙 ↔ 𝑗 < 𝑙 ) ) |
| 72 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑗 ) ) |
| 73 |
72
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑙 ) ) ) |
| 74 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑗 ) ) |
| 75 |
74
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑙 ) ) ) |
| 76 |
73 75
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ↔ ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) |
| 77 |
71 76
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ↔ ( 𝑗 < 𝑙 → ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ) |
| 78 |
|
breq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝑗 < 𝑙 ↔ 𝑗 < 𝑖 ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝐴 ‘ 𝑙 ) = ( 𝐴 ‘ 𝑖 ) ) |
| 80 |
79
|
oveq2d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑖 ) ) ) |
| 81 |
|
fveq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝐵 ‘ 𝑙 ) = ( 𝐵 ‘ 𝑖 ) ) |
| 82 |
81
|
oveq2d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑖 ) ) ) |
| 83 |
80 82
|
eqeq12d |
⊢ ( 𝑙 = 𝑖 → ( ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑙 ) ) ↔ ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑖 ) ) ) ) |
| 84 |
78 83
|
imbi12d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝑗 < 𝑙 → ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑙 ) ) ) ↔ ( 𝑗 < 𝑖 → ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑖 ) ) ) ) ) |
| 85 |
77 84
|
rspc2va |
⊢ ( ( ( 𝑗 ∈ dom 𝐴 ∧ 𝑖 ∈ dom 𝐴 ) ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) → ( 𝑗 < 𝑖 → ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑖 ) ) ) ) |
| 86 |
69 70 85
|
sylc |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( ( 𝐴 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑖 ) ) ) |
| 87 |
1 2 34 53 58 60 63 65 86
|
tgcgrcomlr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) ∧ 𝑗 < 𝑖 ) → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) |
| 88 |
6
|
fdmd |
⊢ ( 𝜑 → dom 𝐴 = 𝐷 ) |
| 89 |
88 5
|
eqsstrd |
⊢ ( 𝜑 → dom 𝐴 ⊆ ℝ ) |
| 90 |
89
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → dom 𝐴 ⊆ ℝ ) |
| 91 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑖 ∈ dom 𝐴 ) |
| 92 |
90 91
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑖 ∈ ℝ ) |
| 93 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑗 ∈ dom 𝐴 ) |
| 94 |
90 93
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → 𝑗 ∈ ℝ ) |
| 95 |
92 94
|
lttri4d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( 𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖 ) ) |
| 96 |
33 52 87 95
|
mpjao3dan |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ 𝑖 ∈ dom 𝐴 ) ∧ 𝑗 ∈ dom 𝐴 ) → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) |
| 97 |
96
|
anasss |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) ∧ ( 𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴 ) ) → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) |
| 98 |
97
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) ) → ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) |
| 99 |
98
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ dom 𝐴 ∀ 𝑙 ∈ dom 𝐴 ( 𝑘 < 𝑙 → ( ( 𝐴 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑙 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐵 ‘ 𝑙 ) ) ) → ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 100 |
26 99
|
biimtrrid |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) → ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) |
| 101 |
11 100
|
impbid |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ↔ ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
| 102 |
8 101
|
bitrd |
⊢ ( 𝜑 → ( 𝐴 ∼ 𝐵 ↔ ∀ 𝑖 ∈ dom 𝐴 ∀ 𝑗 ∈ dom 𝐴 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑗 ) ) ) ) ) |