Metamath Proof Explorer


Theorem tgcgrtriv

Description: Degenerate segments are congruent. Theorem 2.8 of Schwabhauser p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgcgrtriv.1 ( 𝜑𝐴𝑃 )
tgcgrtriv.2 ( 𝜑𝐵𝑃 )
Assertion tgcgrtriv ( 𝜑 → ( 𝐴 𝐴 ) = ( 𝐵 𝐵 ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgcgrtriv.1 ( 𝜑𝐴𝑃 )
6 tgcgrtriv.2 ( 𝜑𝐵𝑃 )
7 4 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐴 ∈ ( 𝐵 𝐼 𝑥 ) ∧ ( 𝐴 𝑥 ) = ( 𝐵 𝐵 ) ) ) → 𝐺 ∈ TarskiG )
8 5 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐴 ∈ ( 𝐵 𝐼 𝑥 ) ∧ ( 𝐴 𝑥 ) = ( 𝐵 𝐵 ) ) ) → 𝐴𝑃 )
9 simplr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐴 ∈ ( 𝐵 𝐼 𝑥 ) ∧ ( 𝐴 𝑥 ) = ( 𝐵 𝐵 ) ) ) → 𝑥𝑃 )
10 6 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐴 ∈ ( 𝐵 𝐼 𝑥 ) ∧ ( 𝐴 𝑥 ) = ( 𝐵 𝐵 ) ) ) → 𝐵𝑃 )
11 simprr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐴 ∈ ( 𝐵 𝐼 𝑥 ) ∧ ( 𝐴 𝑥 ) = ( 𝐵 𝐵 ) ) ) → ( 𝐴 𝑥 ) = ( 𝐵 𝐵 ) )
12 1 2 3 7 8 9 10 11 axtgcgrid ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐴 ∈ ( 𝐵 𝐼 𝑥 ) ∧ ( 𝐴 𝑥 ) = ( 𝐵 𝐵 ) ) ) → 𝐴 = 𝑥 )
13 12 oveq2d ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐴 ∈ ( 𝐵 𝐼 𝑥 ) ∧ ( 𝐴 𝑥 ) = ( 𝐵 𝐵 ) ) ) → ( 𝐴 𝐴 ) = ( 𝐴 𝑥 ) )
14 13 11 eqtrd ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐴 ∈ ( 𝐵 𝐼 𝑥 ) ∧ ( 𝐴 𝑥 ) = ( 𝐵 𝐵 ) ) ) → ( 𝐴 𝐴 ) = ( 𝐵 𝐵 ) )
15 1 2 3 4 6 5 6 6 axtgsegcon ( 𝜑 → ∃ 𝑥𝑃 ( 𝐴 ∈ ( 𝐵 𝐼 𝑥 ) ∧ ( 𝐴 𝑥 ) = ( 𝐵 𝐵 ) ) )
16 14 15 r19.29a ( 𝜑 → ( 𝐴 𝐴 ) = ( 𝐵 𝐵 ) )