| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
| 2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
| 3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
| 4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tgcgrtriv.1 |
|- ( ph -> A e. P ) |
| 6 |
|
tgcgrtriv.2 |
|- ( ph -> B e. P ) |
| 7 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> G e. TarskiG ) |
| 8 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> A e. P ) |
| 9 |
|
simplr |
|- ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> x e. P ) |
| 10 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> B e. P ) |
| 11 |
|
simprr |
|- ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> ( A .- x ) = ( B .- B ) ) |
| 12 |
1 2 3 7 8 9 10 11
|
axtgcgrid |
|- ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> A = x ) |
| 13 |
12
|
oveq2d |
|- ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> ( A .- A ) = ( A .- x ) ) |
| 14 |
13 11
|
eqtrd |
|- ( ( ( ph /\ x e. P ) /\ ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) -> ( A .- A ) = ( B .- B ) ) |
| 15 |
1 2 3 4 6 5 6 6
|
axtgsegcon |
|- ( ph -> E. x e. P ( A e. ( B I x ) /\ ( A .- x ) = ( B .- B ) ) ) |
| 16 |
14 15
|
r19.29a |
|- ( ph -> ( A .- A ) = ( B .- B ) ) |