| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgcgrextend.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgcgrextend.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tgcgrextend.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tgcgrextend.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
tgcgrextend.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 10 |
|
tgcgrextend.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 11 |
|
tgcgrextend.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 12 |
|
tgcgrextend.2 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) |
| 13 |
|
tgcgrextend.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 14 |
|
tgcgrextend.4 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
| 17 |
16
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 21 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐷 ∈ 𝑃 ) |
| 22 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐸 ∈ 𝑃 ) |
| 23 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 24 |
1 2 3 18 19 20 21 22 23 16
|
tgcgreq |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐷 = 𝐸 ) |
| 25 |
24
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐷 − 𝐹 ) = ( 𝐸 − 𝐹 ) ) |
| 26 |
15 17 25
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 27 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐶 ∈ 𝑃 ) |
| 29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 30 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐹 ∈ 𝑃 ) |
| 31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐷 ∈ 𝑃 ) |
| 32 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 33 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐸 ∈ 𝑃 ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
| 35 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 36 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) |
| 37 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 38 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 39 |
1 2 3 27 29 31
|
tgcgrtriv |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 − 𝐴 ) = ( 𝐷 − 𝐷 ) ) |
| 40 |
1 2 3 27 29 32 31 33 37
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
| 41 |
1 2 3 27 29 32 28 31 33 30 29 31 34 35 36 37 38 39 40
|
axtg5seg |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
| 42 |
1 2 3 27 28 29 30 31 41
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 43 |
26 42
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |