Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tkgeom.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
| tkgeom.d | ⊢ − = ( dist ‘ 𝐺 ) | ||
| tkgeom.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
| tkgeom.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
| tgcgrcomlr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | ||
| tgcgrcomlr.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | ||
| tgcgrcomlr.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | ||
| tgcgrcomlr.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) | ||
| tgcgrcomlr.6 | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) | ||
| Assertion | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐷 − 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
| 2 | tkgeom.d | ⊢ − = ( dist ‘ 𝐺 ) | |
| 3 | tkgeom.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
| 4 | tkgeom.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
| 5 | tgcgrcomlr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | |
| 6 | tgcgrcomlr.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | |
| 7 | tgcgrcomlr.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | |
| 8 | tgcgrcomlr.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) | |
| 9 | tgcgrcomlr.6 | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) | |
| 10 | 1 2 3 4 5 6 | axtgcgrrflx | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐴 ) ) |
| 11 | 1 2 3 4 7 8 | axtgcgrrflx | ⊢ ( 𝜑 → ( 𝐶 − 𝐷 ) = ( 𝐷 − 𝐶 ) ) |
| 12 | 9 10 11 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐷 − 𝐶 ) ) |