Metamath Proof Explorer


Theorem tgcgrcomlr

Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgcgrcomlr.a φAP
tgcgrcomlr.b φBP
tgcgrcomlr.c φCP
tgcgrcomlr.d φDP
tgcgrcomlr.6 φA-˙B=C-˙D
Assertion tgcgrcomlr φB-˙A=D-˙C

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgcgrcomlr.a φAP
6 tgcgrcomlr.b φBP
7 tgcgrcomlr.c φCP
8 tgcgrcomlr.d φDP
9 tgcgrcomlr.6 φA-˙B=C-˙D
10 1 2 3 4 5 6 axtgcgrrflx φA-˙B=B-˙A
11 1 2 3 4 7 8 axtgcgrrflx φC-˙D=D-˙C
12 9 10 11 3eqtr3d φB-˙A=D-˙C