| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgcgrcomlr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgcgrcomlr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tgcgrcomlr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tgcgrcomlr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
tgcgrcomlr.6 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐶 ∈ 𝑃 ) |
| 12 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐷 ∈ 𝑃 ) |
| 13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 14 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
| 16 |
15
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐵 ) ) |
| 17 |
14 16
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐶 − 𝐷 ) = ( 𝐵 − 𝐵 ) ) |
| 18 |
1 2 3 10 11 12 13 17
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐶 = 𝐷 ) |
| 19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐴 ∈ 𝑃 ) |
| 21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐵 ∈ 𝑃 ) |
| 22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐷 ∈ 𝑃 ) |
| 23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐶 = 𝐷 ) |
| 25 |
24
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → ( 𝐶 − 𝐷 ) = ( 𝐷 − 𝐷 ) ) |
| 26 |
23 25
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐷 ) ) |
| 27 |
1 2 3 19 20 21 22 26
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝐴 = 𝐵 ) |
| 28 |
18 27
|
impbida |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) |