| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tkgeom.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tkgeom.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | tkgeom.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | tkgeom.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | tgcgrcomlr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | tgcgrcomlr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | tgcgrcomlr.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | tgcgrcomlr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | tgcgrcomlr.6 | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 10 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 11 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐶  ∈  𝑃 ) | 
						
							| 12 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐷  ∈  𝑃 ) | 
						
							| 13 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 14 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐵  −  𝐵 ) ) | 
						
							| 17 | 14 16 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝐶  −  𝐷 )  =  ( 𝐵  −  𝐵 ) ) | 
						
							| 18 | 1 2 3 10 11 12 13 17 | axtgcgrid | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐶  =  𝐷 ) | 
						
							| 19 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 20 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐴  ∈  𝑃 ) | 
						
							| 21 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐵  ∈  𝑃 ) | 
						
							| 22 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐷  ∈  𝑃 ) | 
						
							| 23 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐶  =  𝐷 ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  ( 𝐶  −  𝐷 )  =  ( 𝐷  −  𝐷 ) ) | 
						
							| 26 | 23 25 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐷 ) ) | 
						
							| 27 | 1 2 3 19 20 21 22 26 | axtgcgrid | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐴  =  𝐵 ) | 
						
							| 28 | 18 27 | impbida | ⊢ ( 𝜑  →  ( 𝐴  =  𝐵  ↔  𝐶  =  𝐷 ) ) |