| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tkgeom.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tkgeom.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | tkgeom.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | tkgeom.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | tgcgrcomlr.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | tgcgrcomlr.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | tgcgrcomlr.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | tgcgrcomlr.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | tgcgrcomlr.6 |  |-  ( ph -> ( A .- B ) = ( C .- D ) ) | 
						
							| 10 | 4 | adantr |  |-  ( ( ph /\ A = B ) -> G e. TarskiG ) | 
						
							| 11 | 7 | adantr |  |-  ( ( ph /\ A = B ) -> C e. P ) | 
						
							| 12 | 8 | adantr |  |-  ( ( ph /\ A = B ) -> D e. P ) | 
						
							| 13 | 6 | adantr |  |-  ( ( ph /\ A = B ) -> B e. P ) | 
						
							| 14 | 9 | adantr |  |-  ( ( ph /\ A = B ) -> ( A .- B ) = ( C .- D ) ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ A = B ) -> A = B ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( ph /\ A = B ) -> ( A .- B ) = ( B .- B ) ) | 
						
							| 17 | 14 16 | eqtr3d |  |-  ( ( ph /\ A = B ) -> ( C .- D ) = ( B .- B ) ) | 
						
							| 18 | 1 2 3 10 11 12 13 17 | axtgcgrid |  |-  ( ( ph /\ A = B ) -> C = D ) | 
						
							| 19 | 4 | adantr |  |-  ( ( ph /\ C = D ) -> G e. TarskiG ) | 
						
							| 20 | 5 | adantr |  |-  ( ( ph /\ C = D ) -> A e. P ) | 
						
							| 21 | 6 | adantr |  |-  ( ( ph /\ C = D ) -> B e. P ) | 
						
							| 22 | 8 | adantr |  |-  ( ( ph /\ C = D ) -> D e. P ) | 
						
							| 23 | 9 | adantr |  |-  ( ( ph /\ C = D ) -> ( A .- B ) = ( C .- D ) ) | 
						
							| 24 |  | simpr |  |-  ( ( ph /\ C = D ) -> C = D ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ( ph /\ C = D ) -> ( C .- D ) = ( D .- D ) ) | 
						
							| 26 | 23 25 | eqtrd |  |-  ( ( ph /\ C = D ) -> ( A .- B ) = ( D .- D ) ) | 
						
							| 27 | 1 2 3 19 20 21 22 26 | axtgcgrid |  |-  ( ( ph /\ C = D ) -> A = B ) | 
						
							| 28 | 18 27 | impbida |  |-  ( ph -> ( A = B <-> C = D ) ) |