| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
| 2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
| 3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
| 4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tgcgrcomlr.a |
|- ( ph -> A e. P ) |
| 6 |
|
tgcgrcomlr.b |
|- ( ph -> B e. P ) |
| 7 |
|
tgcgrcomlr.c |
|- ( ph -> C e. P ) |
| 8 |
|
tgcgrcomlr.d |
|- ( ph -> D e. P ) |
| 9 |
|
tgcgrcomlr.6 |
|- ( ph -> ( A .- B ) = ( C .- D ) ) |
| 10 |
4
|
adantr |
|- ( ( ph /\ A = B ) -> G e. TarskiG ) |
| 11 |
7
|
adantr |
|- ( ( ph /\ A = B ) -> C e. P ) |
| 12 |
8
|
adantr |
|- ( ( ph /\ A = B ) -> D e. P ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ A = B ) -> B e. P ) |
| 14 |
9
|
adantr |
|- ( ( ph /\ A = B ) -> ( A .- B ) = ( C .- D ) ) |
| 15 |
|
simpr |
|- ( ( ph /\ A = B ) -> A = B ) |
| 16 |
15
|
oveq1d |
|- ( ( ph /\ A = B ) -> ( A .- B ) = ( B .- B ) ) |
| 17 |
14 16
|
eqtr3d |
|- ( ( ph /\ A = B ) -> ( C .- D ) = ( B .- B ) ) |
| 18 |
1 2 3 10 11 12 13 17
|
axtgcgrid |
|- ( ( ph /\ A = B ) -> C = D ) |
| 19 |
4
|
adantr |
|- ( ( ph /\ C = D ) -> G e. TarskiG ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ C = D ) -> A e. P ) |
| 21 |
6
|
adantr |
|- ( ( ph /\ C = D ) -> B e. P ) |
| 22 |
8
|
adantr |
|- ( ( ph /\ C = D ) -> D e. P ) |
| 23 |
9
|
adantr |
|- ( ( ph /\ C = D ) -> ( A .- B ) = ( C .- D ) ) |
| 24 |
|
simpr |
|- ( ( ph /\ C = D ) -> C = D ) |
| 25 |
24
|
oveq1d |
|- ( ( ph /\ C = D ) -> ( C .- D ) = ( D .- D ) ) |
| 26 |
23 25
|
eqtrd |
|- ( ( ph /\ C = D ) -> ( A .- B ) = ( D .- D ) ) |
| 27 |
1 2 3 19 20 21 22 26
|
axtgcgrid |
|- ( ( ph /\ C = D ) -> A = B ) |
| 28 |
18 27
|
impbida |
|- ( ph -> ( A = B <-> C = D ) ) |