Metamath Proof Explorer


Theorem tgcgreqb

Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgcgrcomlr.a
|- ( ph -> A e. P )
tgcgrcomlr.b
|- ( ph -> B e. P )
tgcgrcomlr.c
|- ( ph -> C e. P )
tgcgrcomlr.d
|- ( ph -> D e. P )
tgcgrcomlr.6
|- ( ph -> ( A .- B ) = ( C .- D ) )
Assertion tgcgreqb
|- ( ph -> ( A = B <-> C = D ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgcgrcomlr.a
 |-  ( ph -> A e. P )
6 tgcgrcomlr.b
 |-  ( ph -> B e. P )
7 tgcgrcomlr.c
 |-  ( ph -> C e. P )
8 tgcgrcomlr.d
 |-  ( ph -> D e. P )
9 tgcgrcomlr.6
 |-  ( ph -> ( A .- B ) = ( C .- D ) )
10 4 adantr
 |-  ( ( ph /\ A = B ) -> G e. TarskiG )
11 7 adantr
 |-  ( ( ph /\ A = B ) -> C e. P )
12 8 adantr
 |-  ( ( ph /\ A = B ) -> D e. P )
13 6 adantr
 |-  ( ( ph /\ A = B ) -> B e. P )
14 9 adantr
 |-  ( ( ph /\ A = B ) -> ( A .- B ) = ( C .- D ) )
15 simpr
 |-  ( ( ph /\ A = B ) -> A = B )
16 15 oveq1d
 |-  ( ( ph /\ A = B ) -> ( A .- B ) = ( B .- B ) )
17 14 16 eqtr3d
 |-  ( ( ph /\ A = B ) -> ( C .- D ) = ( B .- B ) )
18 1 2 3 10 11 12 13 17 axtgcgrid
 |-  ( ( ph /\ A = B ) -> C = D )
19 4 adantr
 |-  ( ( ph /\ C = D ) -> G e. TarskiG )
20 5 adantr
 |-  ( ( ph /\ C = D ) -> A e. P )
21 6 adantr
 |-  ( ( ph /\ C = D ) -> B e. P )
22 8 adantr
 |-  ( ( ph /\ C = D ) -> D e. P )
23 9 adantr
 |-  ( ( ph /\ C = D ) -> ( A .- B ) = ( C .- D ) )
24 simpr
 |-  ( ( ph /\ C = D ) -> C = D )
25 24 oveq1d
 |-  ( ( ph /\ C = D ) -> ( C .- D ) = ( D .- D ) )
26 23 25 eqtrd
 |-  ( ( ph /\ C = D ) -> ( A .- B ) = ( D .- D ) )
27 1 2 3 19 20 21 22 26 axtgcgrid
 |-  ( ( ph /\ C = D ) -> A = B )
28 18 27 impbida
 |-  ( ph -> ( A = B <-> C = D ) )